Workshop: Energy Planning for Resilient Military Installations

Energy Supply for Mission Critical Facilities: Tiered Requirements and Capabilities of Supporting Energy Systems

December 5, 2017

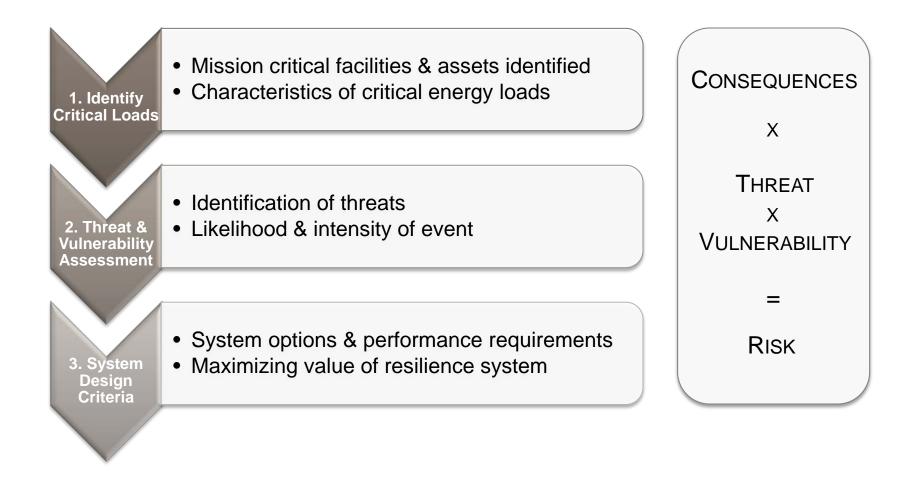
Avinash Srivastava, *Principal, Design* + *Planning* + *Economics* **Calum Thompson**, *Associate, Building Engineering*

- Overview of Approach to Developing Resilient Design Criteria
- Identify Critical Loads
 - What loads need to served
- Impact of Threats and Vulnerabilities on System Requirements
 - How to critical energy systems vary by location
 - \circ Climate
 - o Threats
 - Other factors impacting design requirements
- Maximizing Value in Design

- There is no existing universal protocol for design for resiliency
- About to embark on the development of a Energy Resilience UFC
 - Identify suitable resiliency criteria and best practices for installation energy plans/projects
 - Goal is a clear and consistent approach to developing resilient energy systems

The requirements for systems vary by risk

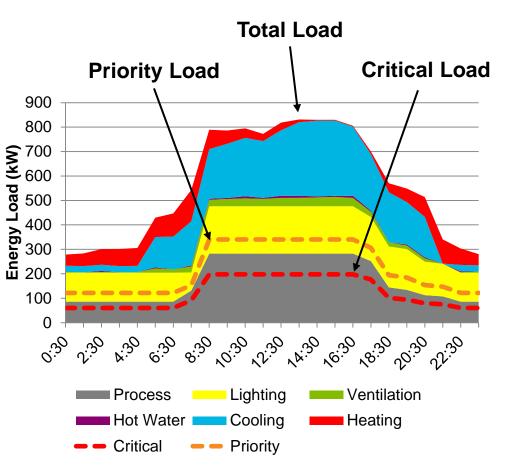
Take inventory of all of the people, processes, and technologies that will be affected by new security solutions.


- RISK = THREAT × VULNERABILITY × CONSEQUENCES

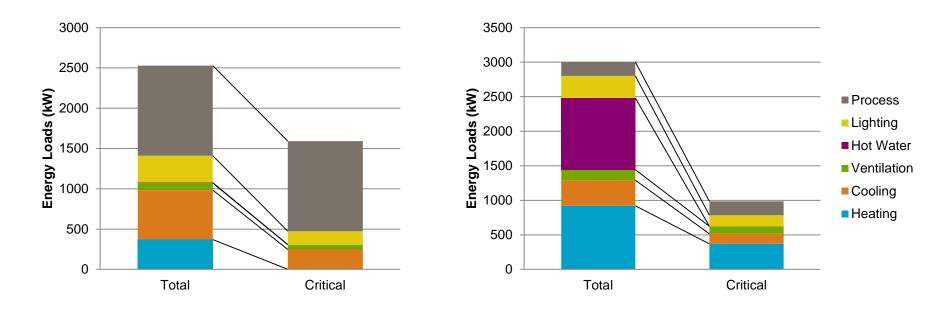
Threat - potential issue that could have negative impacts
 Vulnerability - likelihood of being impacted by a threat
 Consequences - the effects and cost of being impacted by a threat

What are the threats? What makes you vulnerable? What can you afford?

A proposed approach to defining design parameters



The requirements for systems vary by asset mission importance


- Task Critical Asset (TCA) Tiers
 - I. Loss would result in DoD/Service mission (or function) failure
 - II. Loss would result in DoD/Service mission (or function) <u>severe</u> <u>degradation</u>
 - III. Loss would result in <u>non-DoD/Service</u> mission (or function) failure or severe degradation (lower level)
- MDI Ratings
- With these assignments, the overarching requirements are set

ÿ

- Within these critical facilities, the use of energy varies significantly
- Need to consider:
 - Operational times
 - Scale of demand
 - Type of demand
 o Process loads
 - o Lighting systems
 - $\ensuremath{\circ}$ Heating, cooling and ventilation
 - Quality of supply
 - Role under critical operation
 - Ability to load-shed
 - Changing functionality

 A communications building has different demand than a training facility, armory, or airfield

Communications Facility

Recreational Facility

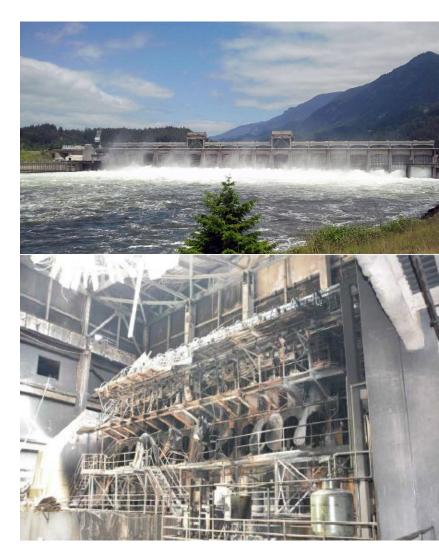
The requirements for systems vary based on threats

- The threats and vulnerabilities need to be assessed to determine the level of resilience the systems need to exhibit:
 - Identification of Threats

 Climate
 Geopolitical
 - oOperational
 - Likelihood of Event
 - Intensity of event (CAT rating on mission impact)

Climate Impact

- Alaska
 - Heating systems are critical
 - District heating & local boilers?
- Guam
 - Cooling is critical
 - District cooling and local chillers?
- San Diego
 - Could lose cooling / heating and be comfortable
 - Passive building design?

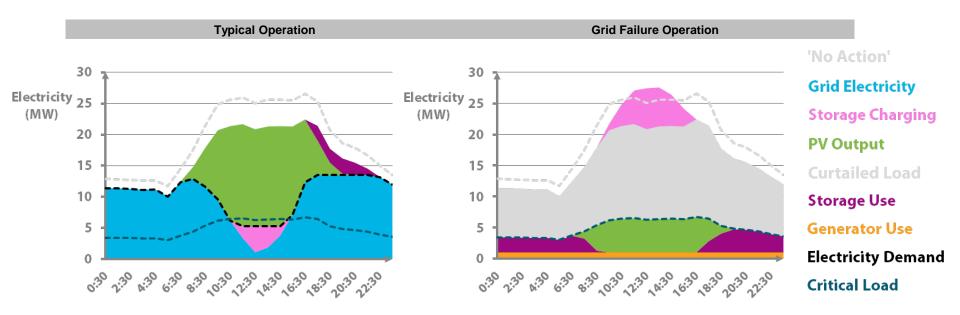


Utility Grid Reliability / Power Quality

- Seattle
 - Very reliable grid
 - Reduced back-up power requirements?

– Guam

- Unreliable, poor quality power supply (400 outages in last 5 years)
- Increased need for on-site generation infrastructure



A more informed design maximizes value of system

- Once required load and resiliency requirements are defined in detail, opportunities for cost reductions and system synergies can be maximized
 - Identifies system types that are applicable
 What level of redundancy/performance is required
 - Design it to reduce costs under regular operations
 o Everyday asset
 - Designing at scale opens up additional benefits
 Shared systems
 - \circ Cost effective
 - o Additional serviceable priority load

- Design systems to maximize economic case
- Example is microgrid, solar and storage strategy at Guam

- Peak demand reductions allow system to pay for itself

- As we go about developing a design protocol we need to consider the whole range of influencing factors:
 - Understanding how the assets use energy
 - What the systems requirements are
 - Both general and site-specific threats and vulnerabilities impact on design
 - Opportunities for cost reductions and operational benefits beyond critical systems

The more you know about how the asset uses energy the more you can optimize the solution