

Renewable Energy Group

Technical evaluation of REG Bio-Residual Oil

Copyright 2017 Renewable Energy Group, Inc.

REG biorefinery capacity

Albert Lea, MN

Mason City, IA

New Boston, TX


Crude Feedstock Capable

Newton, IA

Geismar, LA

Seneca, IL

Houston, TX

Grays Harbor, WA

Raiston, IA

2

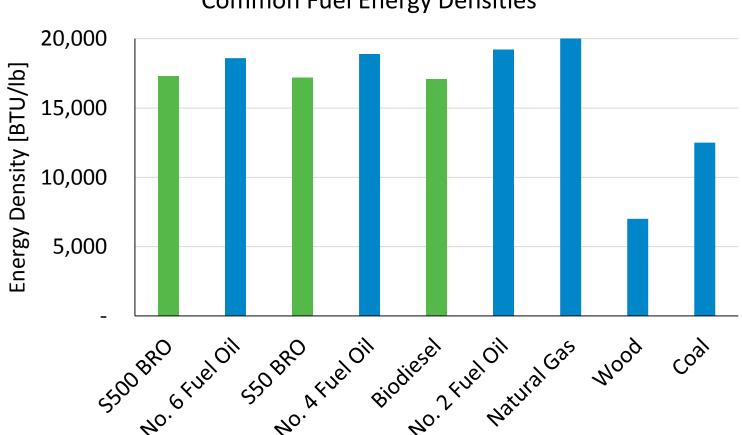
13

REG Bio-Residual Oil is a co-product of biodiesel production

- In 2016 REG produced more than 400 million gallons of biodiesel
- 10 million gallons of REG Bio-Residual Oil is produced annually, at the following locations:
 - REG Albert Lea (MN)
 - REG Mason City (IA)
 - REG Newton (IA)
 - REG Danville (IL)

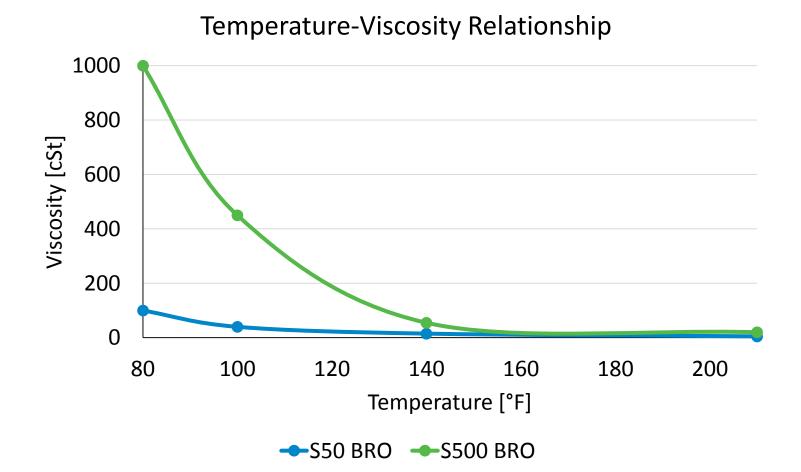
100% renewable replacement to petroleum fuel oils

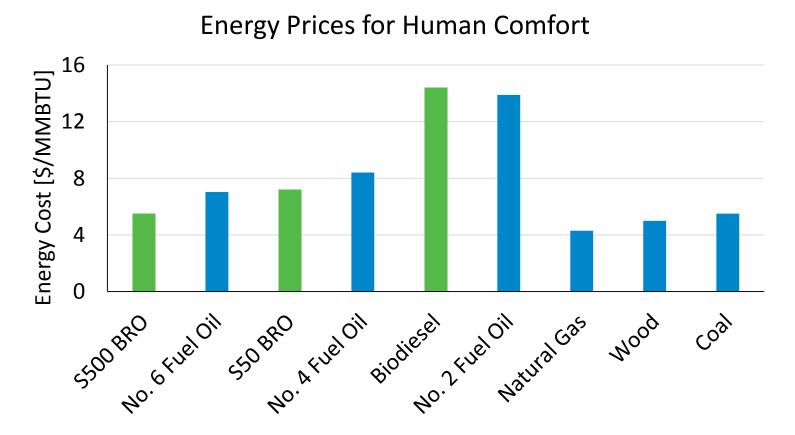
- REG Bio-Residual Oil is produced from recycled fats and oils:
 - used cooking oil byproduct of the restaurant industry
 - inedible corn oil byproduct of corn ethanol production
 - animal fats byproduct of meat production
- REG Bio-Residual Oil has the lowest carbon intensity of any commercially available liquid fuel


Can be produced in two grades: S50 and S500

Fuel Type	S50	S500	No. 6
	BRO	BRO	Fuel Oil
Density @ 100 °F [lb/gal]	7.6	7.8	7.9
Viscosity @ 100 °F [cSt]	40	450	1,000
Sulfur [ppm]	35	250	8,000
Nitrogen [ppm]	300	600	5,000
Ash [wt%]	0.04	0.1	0.1
Karl Fischer Moisture [wt%]	0.1	0.2	0.8
<u> Ultimate Analysis [wt%]</u>			
Carbon	79	80	86
Hydrogen	11	12	11
Oxygen	10	8	< 1

Data represents typical values


REG Bio-Residual Oil has comparable energy density to conventional fuels



REG Bio-Residual Oil's viscosity allows easy handling at moderate temperatures

Copyright 2017 Renewable Energy Group, Inc.

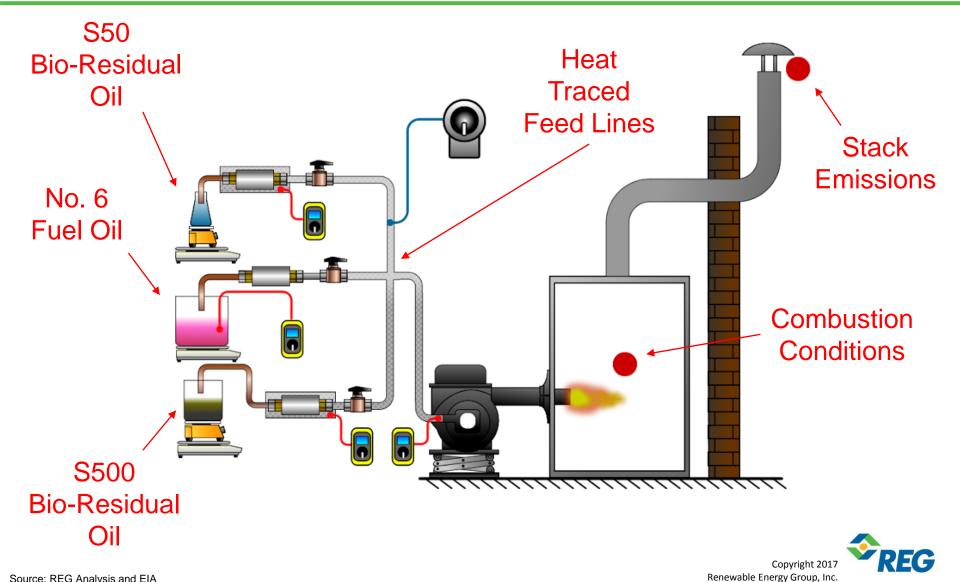
REG Bio-Residual oil is a low-cost liquid fuel alternative

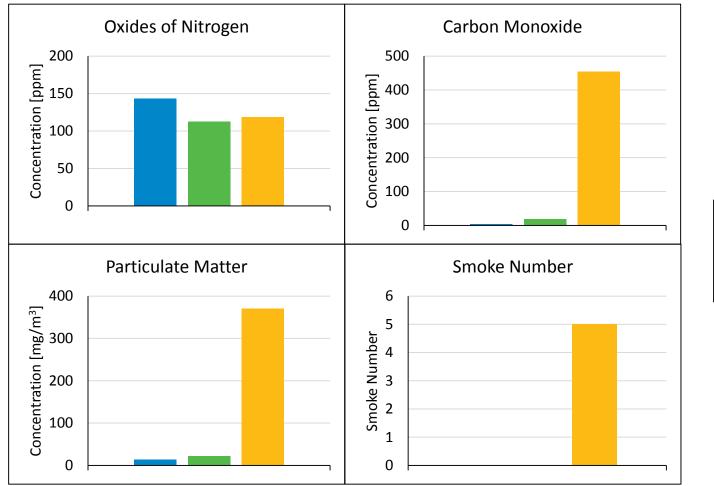
REG Bio-Residual Oil qualifies for RINs when burned for human comfort and RECs when burned for power generation

3 combustion trials have been conducted at Brookhaven National Labs

- Tested on 3 different
 platforms
 - Quartz combustion chamber
 - Residential boiler
 - 1.5 MMBTU boiler (pictured)
- Tom Butcher, PhD with the Energy Conversion Group at Brookhaven National Lab led the testing programs

Trial #1: Residential boiler trial

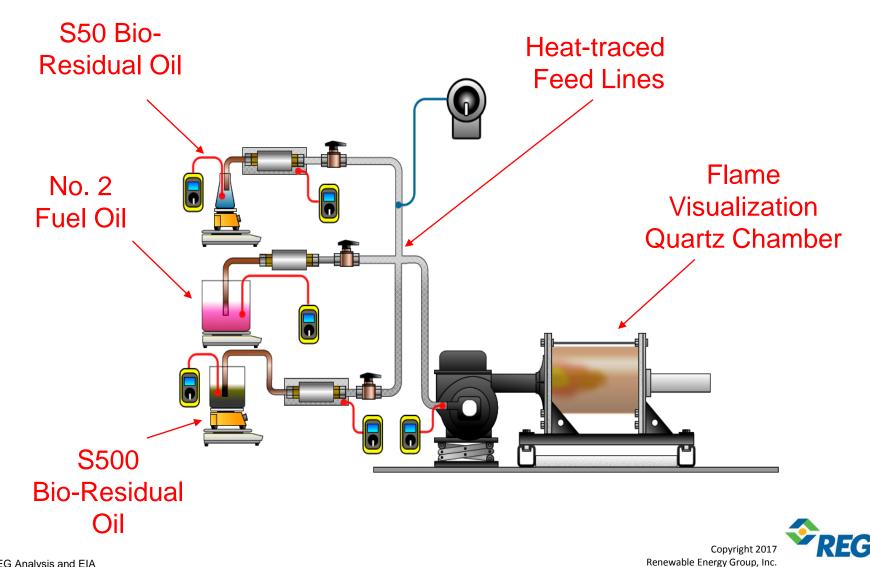

- Carlin pressure atomized residential burner
- 0.5-1 gal/hr flow rate
- Feed lines preheated to 200 °F
- Emissions analysis
 - Particulate matter emissions analyzed with a Wöhler SM500
 - Smoke number analyzed per D2156
 - CO, NOx analyzed with a Testo 350



Copyright 2017 Renewable Energy Group, Inc.

Brookhaven National Lab residential burner test configuration

Residential boiler emissions data



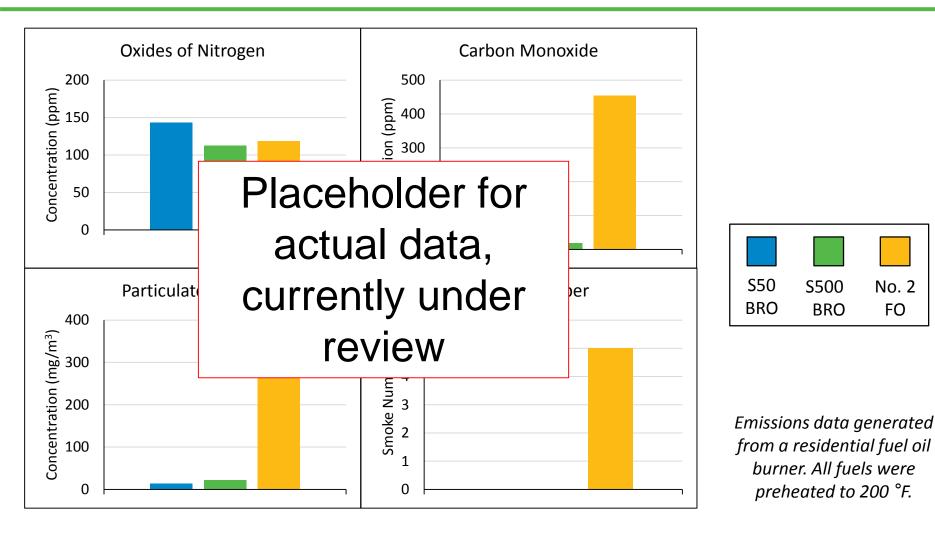
Emissions data generated from a residential fuel oil burner. All fuels were preheated to 200 °F.

Trial #2: Brookhaven National Lab flame visualization test configuration

Quartz chamber flame visualization

REG Bio-Residual oil exhibits excellent characteristic flame behavior:

- Flame retention flame front at the burner outlet indicates suitable volatility for initial combustion
- Flame stability stable flame indicates fuel homogeneity and atomization at the nozzle


Trial #3: Industrial boiler trial

- Carlin pressure-atomized
 burner
- 6-8 gal/hr flow rate
- 1.5 MMBTU/hr heating rate
- Dry-back firetube boiler
- Feed lines were preheated to 200 °F
- Emissions analysis was the same as residential boiler trial

Industrial boiler emissions data

Copyright 2017 Renewable Energy Group, Inc.

No. 2

FO

Bio-Residual Oil is lipids-based

	S500 BRO	S50 BRO	No. 6 FO [‡]
Aromatics [wt%]	< 1	< 1	34
Polar Aromatics [wt%]	< 1	< 1	30
Asphaltenes [wt%]	< 1	< 1	15

- Aromatics and asphaltenes contribute to particulate matter (PM) emissions
- BRO is produced from lipids and does not contain any aromatics or asphaltenes

[‡]Neff, J.M., and Anderson, J.W. Response of marine animals to petroleum and specific petroleum hydrocarbons. United States: N. p., 1981. Web.

Negligible nickel and vanadium is a significant benefit for local air quality

	S500 BRO	S50 BRO	No. 6 FO
Nickel [ppm]	< 1	< 1	89
Vanadium [ppm]	< 1	< 1	73


- Nickel and vanadium are present at significant quantities in petroleum fuel oils
- Fine particle nickel and vanadium, and with PM_{2.5} have been linked to increased mortality rates in New York City[‡]
- BRO has negligible nickel and vanadium and significantly reduced PM emissions compared to petroleum residual fuels

[‡]Journal of Exposure Science and Environmental Epidemiology (2010) 20, 342-350; doi:10.1038/jes.2009.28

REG Bio-Residual Oil is a sustainable replacements for petroleum fuel oils

- S50 BRO is suitable as a drop-in fuel for both light- and heavy-oil burners
- S500 BRO is suitable as a dropin for heavy-fuel burners
- Test conditions on a light-fuel oil burner were 200 °F injection temperature and 150 – 300 psig injection pressure

Acknowledgements

This work was funded by the Renewable Energy Group

Dave Slade, PhD Executive Director, Technical Services Renewable Energy Group Dave.Slade@regi.com

Michael Tetzlaff Quality Engineer Renewable Energy Group Michael.Tetzlaff@regi.com Martin Haverly, PhD Process Development Engineer Renewable Energy Group Martin.Haverly@regi.com

Special thanks to the Energy Conversion Group at Brookhaven National Lab

Tom Butcher, PhD Energy Conversion Group Leader Brookhaven National Lab butcher@bnl.gov

