High Tech Chiller for High Tech Facility Magnetic Bearing Chillers Cooling Office Building

Agenda

- Case study
 - Facility insight
 - Installed equipment
 - Outcome
- History and future of magnetic bearing chillers
 - Timeline of magnetic bearing
 - Magnetic bearing centrifugal chillers for the future

High Tech – Sustainable Facility

- 385,000 square foot facility
- Used by 1,500 professionals
- Office and laboratory environments
- LEED® platinum certification highest such recognition possible
- Geothermal heat pumps, photovoltaic energy, under-floor heating and cooling, parking structure with plug-ins for hybrids, etc.

Installed Equipment

- Installed August 2017
- Over 7,000 run hours
- Water-cooled centrifugal chiller
- 350 tons
- Variable Speed Drive
- Magnetic Bearing
- Quick Start Feature
- Using R-1233zd (GWP of 1)

Replaced oil bearing centrifugal chiller

"We installed in August, our peak cooling season, and the chiller picked up the pace flawlessly" - Facility Manager

QUICK REVIEW - Refrigerant Legislation Today

Existing Refrigerant Bans

- <u>R-123</u> no longer sold in new chillers Per Montreal Protocol 1/1/20
- <u>HFC refrigerant</u> there is **no global ban** on HFC refrigerants

Kigali Amendment

- Kigali Amendment to the Montreal Protocol is a global regulation
- Ramps down demand for HFCs on a timeline for transition over several decades
- The United States has **not ratified** the Kigali Amendment

US EPA SNAP Ruling

- SNAP Rule limiting the sale of 134a & 410A chillers in 2024 was vacated
- Some states have joined the US Climate Alliance, aiming to reduce GHG emissions by 2025
- No current legislation impacts the sale, use or servicing of HFC chillers

QUICK REVIEW - Refrigerant Landscape Today

Conventional Refrigerants					
Refrigerant	Safety	Products	Pressure	GWP	
R-134a	A1	Centrifugal and Screw	Medium	1300	
R-410A	A1	Scroll	High	1924	
Next Generation Low-GWP Refrigerants					
Refrigerant	Safety	Products	Pressure	GWP	
R-513A	A1	Centrifugal and Screw	Medium	573	
R-1233zd	A1	Centrifugal	Low	1	
R-514A	B1	Centrifugal	Low	2	

Other low-GWP refrigerants are flammable, requiring revisions to building codes, safety standards, service and transportation practices

6

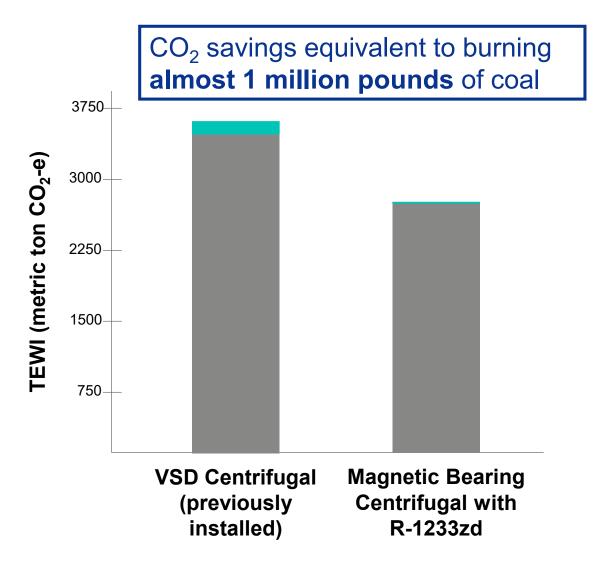
Outcomes To Date

Reduced Emissions

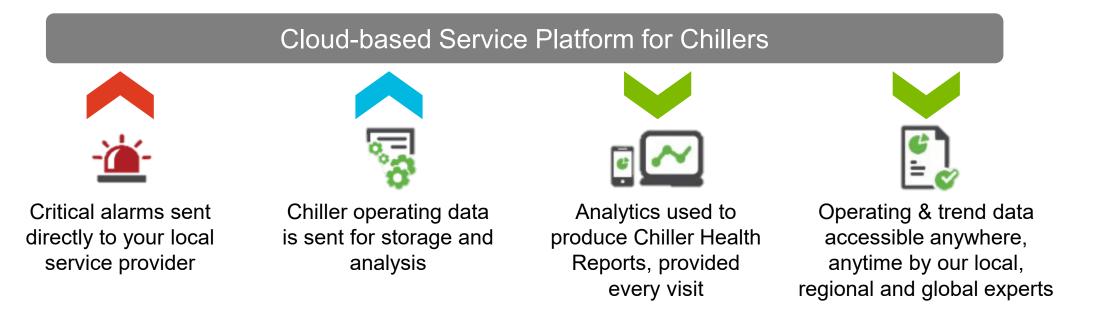
• Reduced total emissions from efficient chiller and low GWP refrigerant

Increased Uptime

- Cloud-based analytics to drive increased uptime
- Reduced Maintenance
 - Magnetic Bearings means less maintenance

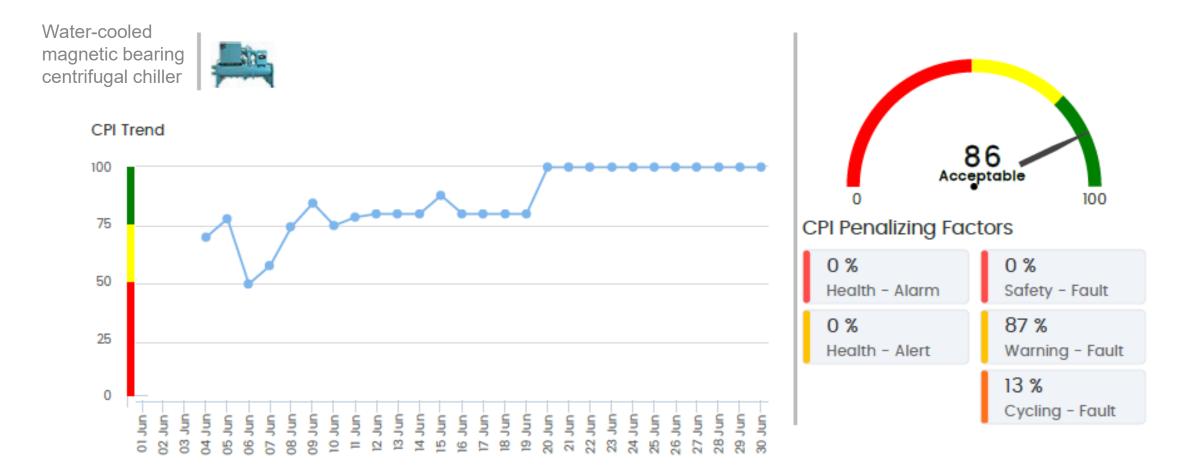

TEWI: Total Equivalent Warming Impact

TEWI = the measurement of a chiller's **direct** + **indirect** emissions


- Indirect Emissions Amount of energy used by the chiller (based on energy source mix of power generation used to operate the chiller)
- **Direct Emissions** determined by impact of possible leak from chiller & GWP of the refrigerant in the chiller (R-1233zd GWP = 1)

Improved efficiency + Iow GWP refrigerant = Lower Environmental Impact

- Direct emissions are reduced by 100%
- Indirect emissions are reduced by 22%
- Total TEWI reduction: 25%

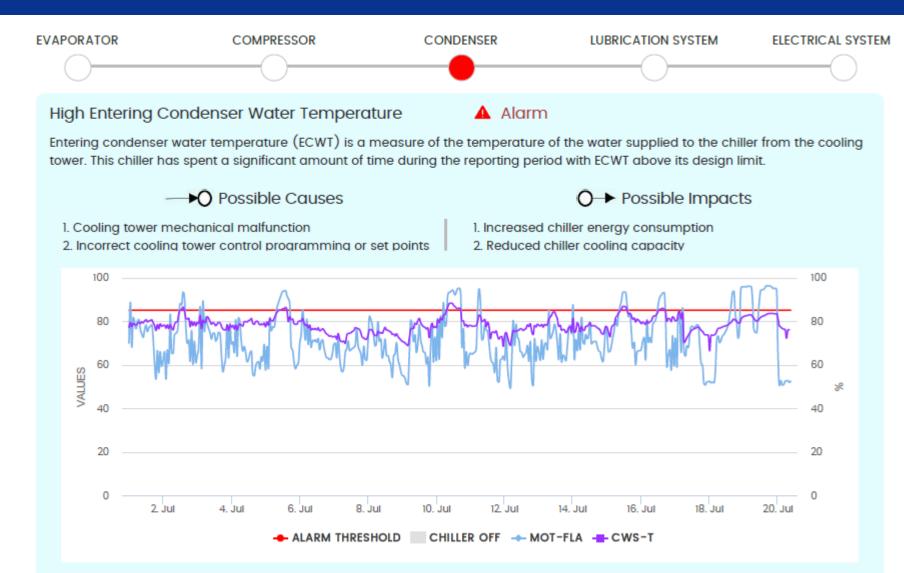

Connecting to the cloud in HVAC

- Constant monitoring of chiller and performance
- Regular reporting
- Preventative maintenance alerts before failure

Chiller Performance Index Summary

10

Broader algorithms can be applied in multi-chiller plant scenarios to identify which chillers require the most attention

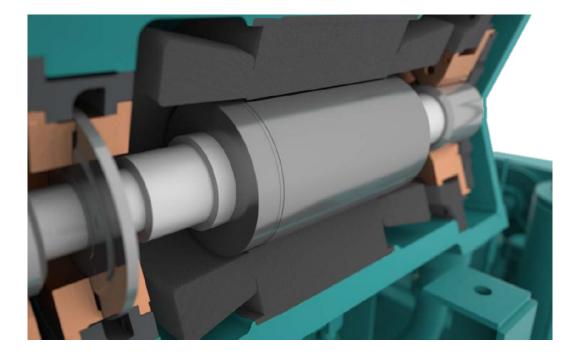

Connected to the Cloud in HVAC

	High Internal Ambient Temperature in VSD	🗹 Acceptable
Regular checks can alert to:	High Condenser Refrigerant Level	🗸 Acceptable
Need for chiller tube	High Entering Condenser Water Temperature	🗹 Acceptable
cleaning	High Evaporator Approach Temperature	🗹 Acceptable
 Cooling tower problems 	High Condenser Approach Temperature	🗹 Acceptable
 Refrigerant leaks 	Low Condenser Refrigerant Level	🗹 Acceptable
	Low Entering Condenser Water Temperature	🗹 Acceptable

Monitoring and Reporting capabilities to proactively look for potential issues

Connected to the Cloud in HVAC

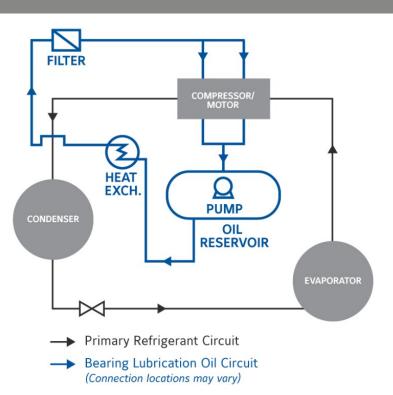
- Possible causes and impacts are identified
- Time chart shows when the issue is occurring to help diagnose potential issues

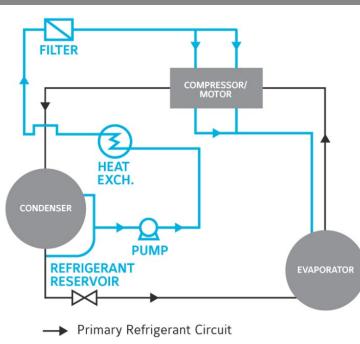


Rated Performance Comparison

	VSD Centrifugal Chiller Previously Installed	VSD Magnetic Bearing Centrifugal Chillers Installed
Capacity	300 Tons	300 Tons
Input Power	170.9 kW	163.9 kW
Full Load Efficiency	0.5697 kW/Ton	0.5463 kW/Ton
Part Load Efficiency	0.3935 kW/Ton	0.3216 kW/Ton
		Full Load: + 4.1% Part Load: + 18.3%

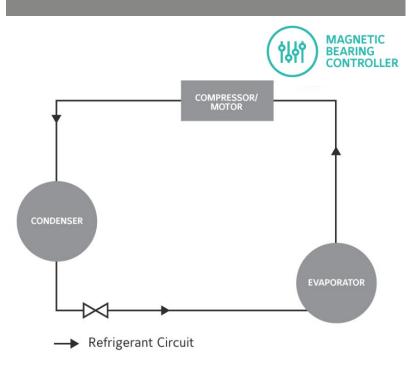
Magnetic Driveline Benefits


- Single moving assembly suspended in a magnetic field with no lubrication system
 - 80% fewer moving parts
 - Non-contact design
- Magnetic bearings deliver
 - Extraordinary efficiency & wide operating map
 - Superior durability
 - Simplified maintenance


Enhanced longevity & reduced maintenance!

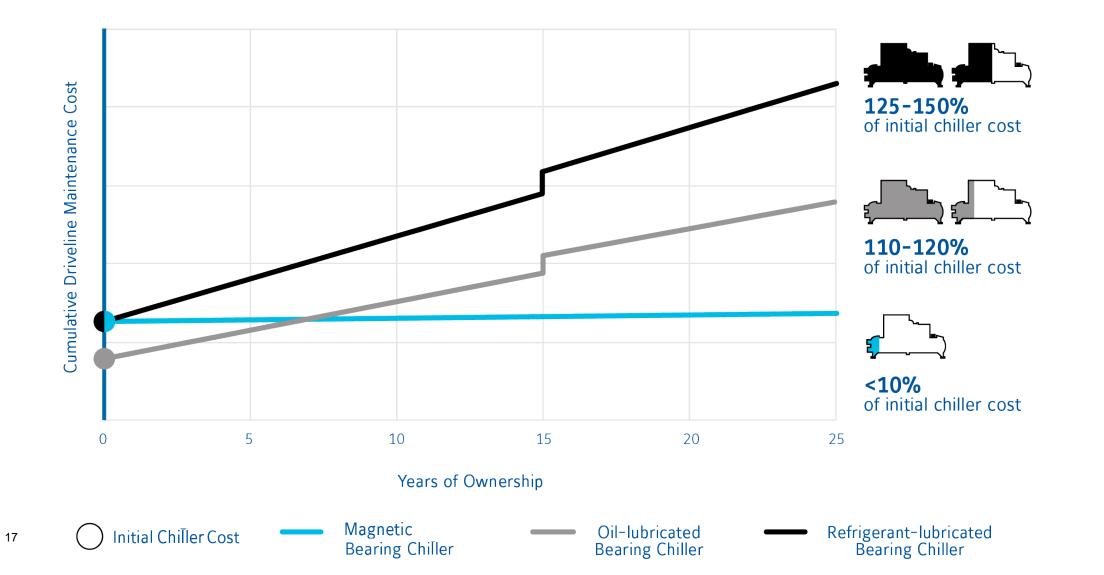
Bearing Options for Centrifugal Chillers

OIL-LUBRICATED BEARINGS



REFRIGERANT-LUBRICATED BALL BEARINGS

Bearing Lubrication Refrigerant Circuit (Connection locations may vary)

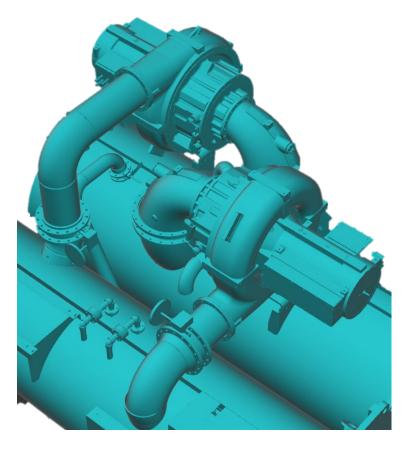

MAGNETIC BEARINGS

Lower Driveline Maintenance

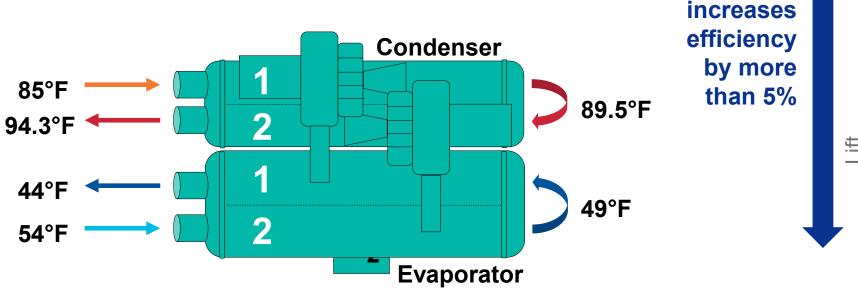
Driveline Maintenance Tasks	Oil-Iubricated Bearings	Refrigerant-lubricated Bearings	Magnetic Bearings
Check lubricant sump & temperature control operation	Monthly	Monthly	-
Check lubrication eductors	Monthly	Monthly	-
Lubricant analysis	Annually	Annually	-
Replace lubricant filter(s)	Annually	Annually	-
Vibration analysis	-	Quarterly	-
Clean refrigerant pump strainer	-	Monthly	-
Battery health test	-	Periodically	Periodically

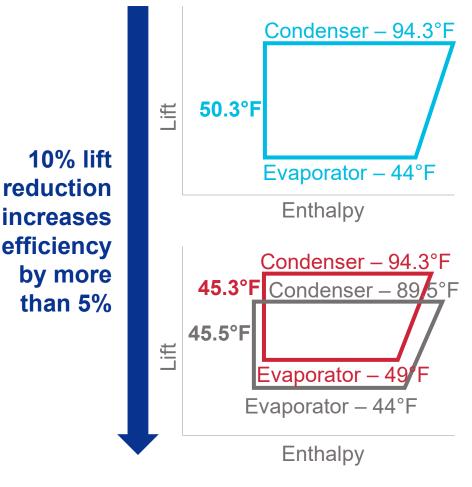
Other Magnetic Bearing Benefits: Lower Driveline Maintenance

History of Magnetic Bearing Technology


- First patents came during WWII
- Magnetic bearing technology introduced in 1998 on critical naval applications
- Introduced in commercial HVAC in 2002
- Bearings support load using magnetic levitation

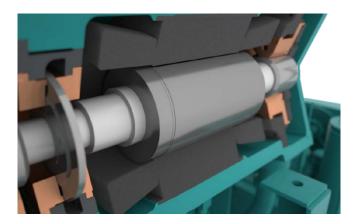
Advanced Aerodynamic System

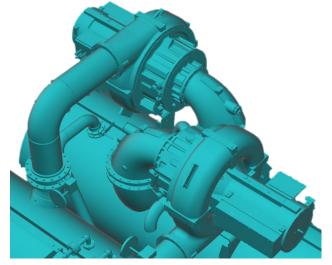

- 2 single-stage compressors
- Paired in Series Counterflow arrangement
 - Reduces lift on each compressor
 - Improves overall full load and part load performance
- Capability to run 1 compressor at a time
 - Redundancy in case of a shutdown or failure
 - Low load situations


Increases turndown capability

Series Counterflow Benefit

- Split shell design 1 shell, 2 circuits
 - Patented technology
 - Only feasible with low pressure refrigerant
- High efficiency in a compact package
- Inherent 2 pass design




Series Counterflow Example

	2000 Ton Chiller at AHRI Conditions	
	Parallel Configuration	Series Counterflow
Input Power	1010.6 kW	945.9 kW
Full Load Efficiency	0.5053	0.4730
IPLV	0.3071	0.2788
	Benefit Full Load: + 6.4% Part Load: + 9.2%	

- Magnetic Bearing innovative technology works well for high tech – high demanding buildings
 - Improved energy efficiency
 - Reduced maintenance
- Now dual compressor design offers series counterflow benefit

