Resilience in Design The Persistent Path to Energy Security Kevin Fox, PE, CEM | Jacobs Engineering Group Inc.



Resilience in Energy

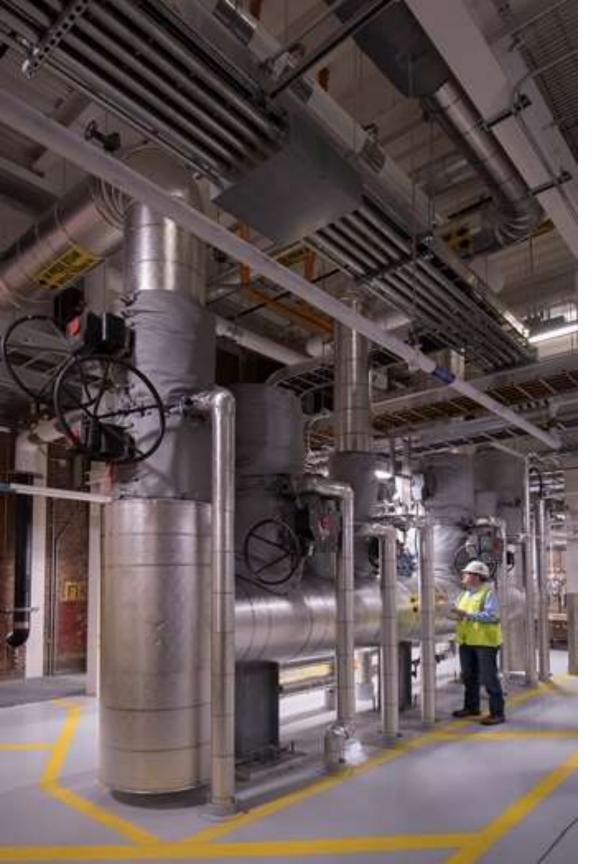
How do you value resilience?

How do you achieve resilience?

How do you measure resilience?

Basic Understanding

Context for Energy Infrastructure


Department of Defense (DoD)	Resilience is the ability to prepare for and reco energy disruptions that impact mission assura military installations.
National Academy of Sciences	Resilience is the ability to prepare and plan for recover from, and more successfully adapt to a
Pacific Northwest National Laboratory	Resilience is, "the ability to anticipate, prepare adapt to changing conditions and withstand, re and recover rapidly from disruptions."

over from ance on

or, absorb, adverse event.

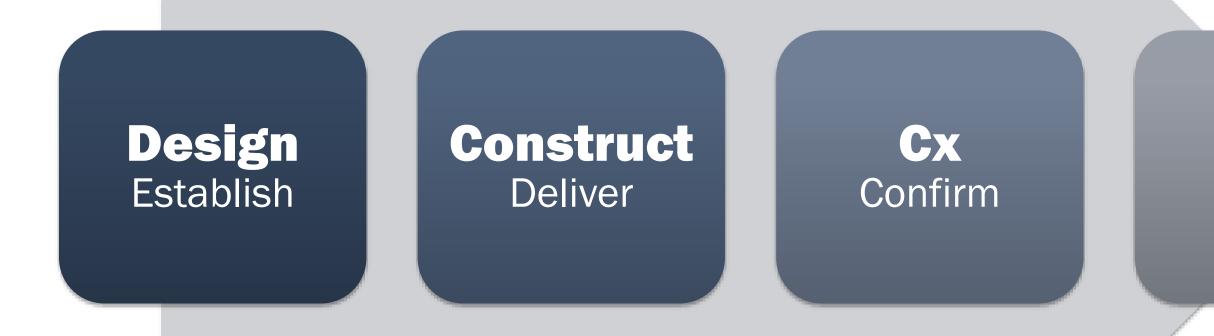
re for, and respond to,

End Game for System Development

...PREPARE

...ABSORB

...RECOVER


Misconceptions...

Resilience is not delivered by planning alone.

Selecting a particular system does not guarantee resilience.

Delivering Resilience

After the planning dust settles, the system **must deliver results!**

O&M Sustain

Resilience in Design

Imperative – Broad Perspective

Maintainable

Addressing Resilience in **Design**

2

Assess Threats

Mitigate Risks

HazID to Find Risks

External

1

- Facility/Ops
- Health
- **Project/implementation**

Failure Modes/Fault Analysis

- Loss of Service
- Loss of Availability
- **Unmet Performance Standard**
- **Secondary Defect**

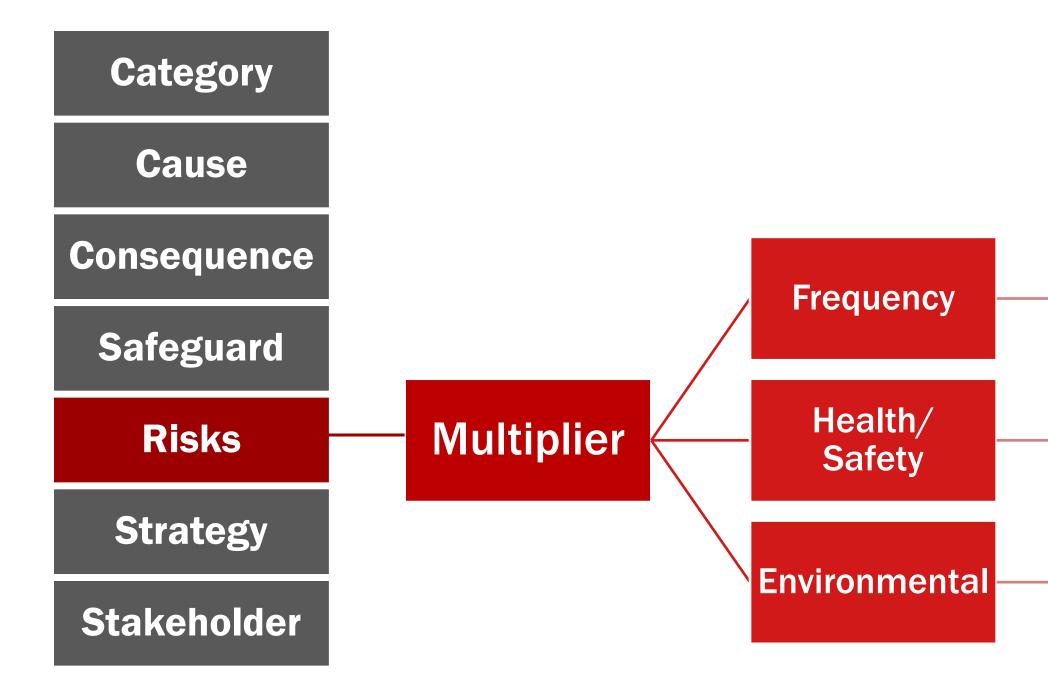
Addressing Resilience in **Design**

It is imperative to collaborate amongst a strong and diverse team in these two steps.

Systems, processes and consequences must be thoroughly understood!

Assess Threats and Hazards

Process Hazards


Working Hazards

Competency

JACOBS

Hazard Management

Assess Threats and Hazards

JACOBS

Factor 0-1-2-3-6-16

Factor 0 1-2-3-6-16

Factor 0-1-2-3-4-5

Mitigate Risks

Review Processes Based on HazID

Brainstorm Failure Modes

Rate the Risk

Develop Strategy to Mitigate Risk

Implement Corrective Actions

Monitor and Reassess

Context

Loss of Service

Unmet Performance **Standard**

Loss of **Availability**

Secondary Defect

Mitigate Risks

Review Processes Based on HazID

Brainstorm Failure Modes

Rate the Risk

Develop Strategy to Mitigate Risk

Implement Corrective Actions

Monitor and Reassess

Risk Priority Number

Rate Severity of Event

Rate Likelihood of Occurrence

Rate Likelihood of Detection

Example Fuel Sources + Systems

Hazard Identification

Risk Rating = F * max (HS, E)

- **F** = Frequency Factor
- **HS** = Health & Safety Impact
- **E** = Environmental Impact

Hazard Identification Frequency Factor

Likelihood of Event?	Frequency
Not Possible	Never
Negligible	< Once in 100 years, not expected in lifetime of plant
Unlikely	Once in 20-100 years, could possibly occur in lifetime of plant
Possible	Once in 3-20 years, could occur once in lifetime of plant
Likely	Once in 1.5-3 years, could occur several times in lifetime of plant
Near Certain	More than once in 1.5 years, frequent occurrence

Factor
0
1
2
3
4
5

Hazard Identification Health & Safety Impact

H&S Impact?	Frequency
Νο	No impact inside or outside property
Minor	Medical treatment, first aid
Moderate	Incident resulting in multiple days off work; no permanent effect
Serious	Serious injury, high medical treatment; possible permanent negative effects
Severe	1-3 fatalities on site or 1 -3 serious injuries outside facility
Huge	More than three fatalities in or outside plant

Factor	
0	
1	
2	
3	
6	
16	

Hazard Identification Environmental Impact

Environmental Impact?	Frequency
Νο	No consequences
Minor	Very limited impact (restitution time < 1 day)
Moderate	Short-term impact (restitution time < 5 days)
Serious	Medium-term impact (restitution time 1-3 weeks)
Severe	Long-term impact (restitution time 3-6 months)
Huge	Permanent impact (restitution time > 1 year)

Factor
0
1
2
3
6
16

Hazard Identification

Risk Rating = F * max (HS, E) 0-2 3-8 >8

Hazard Identification

Hazard	Cause	Consequence Mitigation		F	HS	Е
Weather	Curtailment	Outage-planned	Fuel backup	4	0	2
Security	Hostile	Outage-unplanned	Fuel backup; harden asset	3	0	3
Pipe Failure	Construction	Outage-unplanned	Fuel backup	1	0	3
Explosion	Compressor	Major damage	Upgrade utility gas source	2	16	6

RR	Action
8	Dual fuel
9	Dual fuel
3	Dual fuel
32	Utility, Facility

Risk Mitigation

Hazard	Cause	Consequence	Mitigation	F	HS	Е
Weather	Curtailment	Outage-planned	Fuel backup	4	0	2
Security	Hostile	Outage-unplanned	Fuel backup; harden asset	3	0	3
Pipe Failure	Construction	Outage-unplanned	Fuel backup	1	0	3
Explosion	Compressor	Major damage	Upgrade utility gas source	2	16	6

Risk	Severity	Occurrence Probability	Non-Detect Probability	RPN	Mitigation
Improperly Classified Instruments	10	2	4	80	Submittal Reviews
Incorrect Relief Valve Locations	10	3	2	60	Quality Control, Ve
Internal Pipe Blockages	10	3	7	210	Strainers, Pressur Safety Shut-off

RR	Action
8	Dual fuel
9	Dual fuel
3	Dual fuel
32	Utility, Facility

vs, Cx Due Diligence

/endor Coordination

ure Monitor,

Kevin Fox, PE, CEM Booth #61

