

Fuel Cell Waste Heat Utilization at the University of Bridgeport

IDEA Conference March 9, 2018

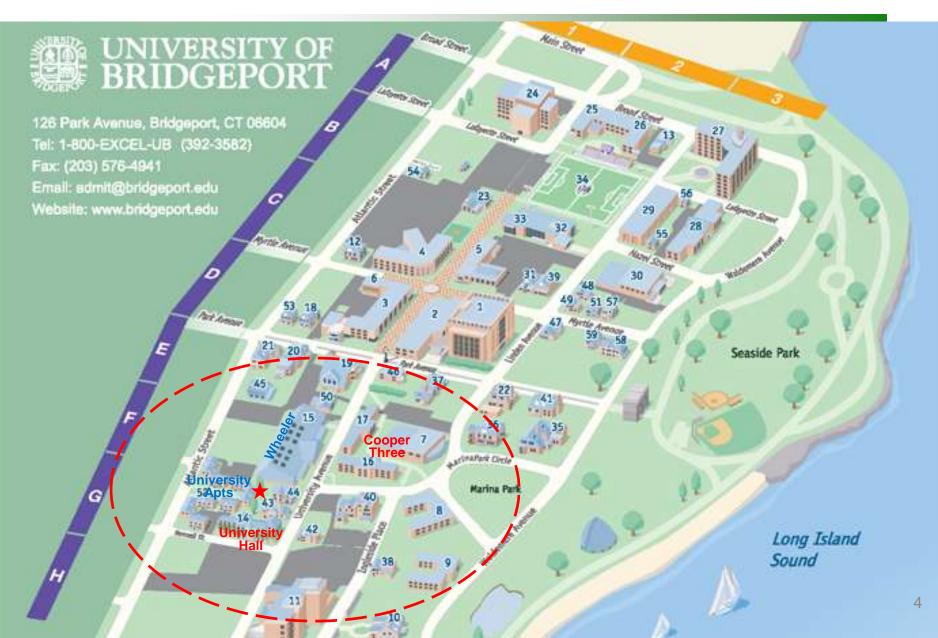
Linfeng Zhang, Department of Electrical Engineering Junling(Joyce) Hu and Nouman Kan, Department of Mechanical Engineering David P. Cote, P.E., Executive Director – Facilities Planning and Operations

University of Bridgeport:

- The University of Bridgeport, an independent and non-sectarian institution, offers career-oriented undergraduate and graduate degrees.
- Comprised of 5,500 students with 1,250 on-campus residents.
- 52 buildings including Academic, Administrative, Dormitory and Apartments equaling approximately 1.5M square feet.
- Over 53 acres crossing several city streets

RAMBOLL

Why Fuel Cells at UB?



- Efficiency: 47% for electrical power, higher for CHP
- Energy security and reliability for a microgrid (point of common coupling)
- Low emission as a clean energy source
- Quiet generator

Another entity owns and operates the fuel cell
We purchases the electric power while the heat is available for free.

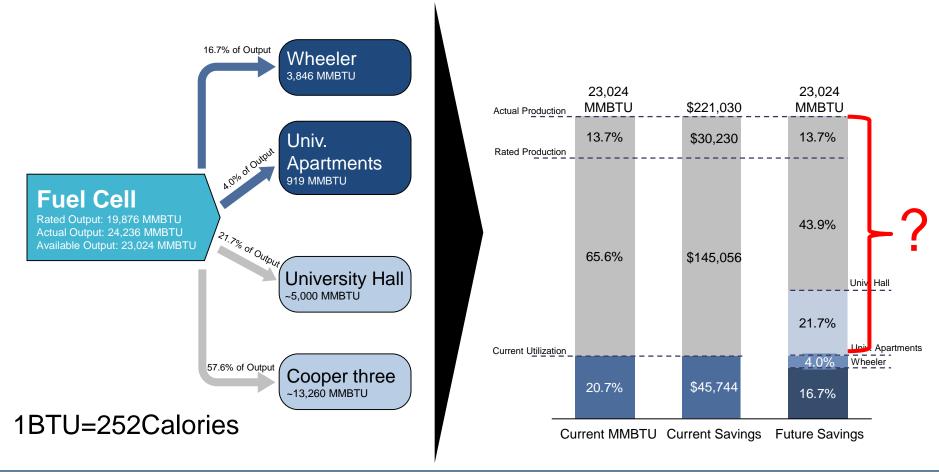
FC Overview

- 1.4 MW combined heat & power fuel cell power plant
- Space requirement ~ 40 ft x 60 ft
- Electric production ~ 11 million kWh per year
- Utilities needed: natural gas or bio gas fuel, potable water, sewer
- Supplies 80% of campus power needs
- Waste heat converted to hot water and supplied to three locations on campus
- Connecticut Microgrid Program Award

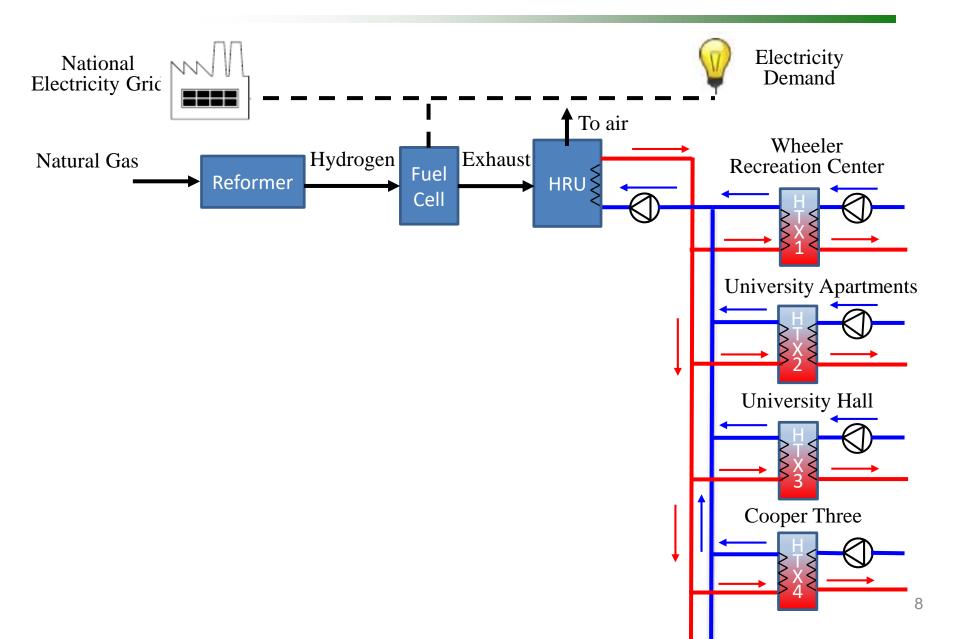
<u>Benefits</u>

- Cost savings during normal operations
- In a grid outage, power to critical facilities – shelter ~2700 persons, security, dining
- Emissions reductions: 7,000 tons CO₂, 64 tons SOx, 28 tons NOx
- Renewable Energy Research Lab "practice what we teach"

RAMBOLL


SureSource 1500 1.4 Mega Watts Fuel Cell Power Plant PERFORMANCE

	Gross Power Output		Water Consumption		
	Power @ Plant Rating	1,400 kW	Average	4.5 gpm	
	Standard Output AC voltage	480 V	Peak during WTS backflush	15 gpm	
	Standard Frequency	60 Hz			
	Optional Output AC Voltages	By Request	Water Discharge		
	Optional Output Frequency	50 Hz	Average	2.25 gpm	
			Peak during WTS backflush	15 gpm	
	Efficiency		_		
	LHV	47 +/- 2 %	Pollutant Emissions		
			NOx	0.01 lb/MWh	
	Available Heat		SOx	0.0001 lb/MWh	
	Exhaust Temperature	700 +/- 50 °F	PM10	0.00002 lb/MWh	
	Exhaust Flow	18,300 lb/h			
	Allowable Backpressure	5 iwc	Greenhouse Gas Emissions		
, -		、	CO2	980 lb/MWh	
	Heat Energy Available for Recovery	I	CO2 (with waste heat recovery)	520-680 lb/MWh	
	(to 250 °F)	2,216,000 Btu/h			
	(to 120 °F)	3,730,000 Btu/h	Sound Level		
~		/	Standard	72 dB(A) at 10 feet	
	Fuel Consumption		_		
	Natural gas (at 930 Btu/ft3)	181 scfm	_		
	Heat rate, LHV	7,260 Btu/kWh			


A Study of Fuel Cell Waste Heat Utilization

RAMBOLL

Fuel Cell Heat for Current and Potential Connections :

- The heat demand of University Apartments and Wheeler Recreation Center is less than half of the total Fuel Cell recovered heat
 - 24% in the summer season
 - 54% in the winter season
- Switching on University Hall
 - Connection has been built
 - Expansion tank size is questionable
- Connecting Cooper Three buildings
 - The total heat demand exceeds the total heat recovered from Fuel Cell in winter

The goal: identify costs and benefits of expanding hot water network to provide heat from fuel cell to additional buildings

Life cycle cost

#	Components	Life span (years)	Initial cost (\$)	Present worth (\$)
1	Heat Exchanger	25	5,000	5,000
600 ft	4" Pex piping	25	16,587	16,587
1	Pump	10	2,500	2,500
1	Pump (10 year)			2487.5
1	Pump (20 year)			2,475
57	Installation	N/A	159,000	159,000
N/A	Miscellaneous	N/A	5,000	5,000
7	Annual Maintenance		300	7,451
Life cycle cost				200,500

Inflation rate is set as 2.3%, Interest rate is set as 2.35% The cumulative present worth **factor**

Saving in 25 years

Heat (MMBTU) 6630	Annual saving (k\$) 79	25 years (k\$) 1,965	\$12 for 1MBTU
	2.5 yr payback		

Social cost

Heat (MMBTU)	Natural gas	CO ₂	Annual Social	25 years
	(ton HHV)	(ton)	cost (k\$)	(k\$)
6630	126	347	13.9	345.2