Future Proofing Dalhousie’s Energy Platforms for the 21st Century

Darrell Boutilier, Director – Operations, Facilities Management
Rochelle Owen, Executive Director - Office of Sustainability
Michael Conte, Project Manager – FVB
Agenda:

• Sustainability Drivers
• Operational Drivers
• AC Project Implementation
• Halifax Plant
• Q&A
Where are we?
Dalhousie University Campuses

Founded in 1818

100+ buildings/houses on 79-acres in downtown Halifax.

50+ buildings AC campus

Includes 5.8 million gross square feet of building space.

A campus population of approximately 26,500 (19,000 students, 7500 faculty and staff).

Four Campuses: Studley, Carleton, Sexton – Downtown Halifax, AC – Truro Bible Hill

Two Heating Plants & District Heating Systems that connect 96% of the load
Dalhousie University - Studley, Carleton & Sexton – Halifax Campuses
Dalhousie University - Agricultural Campus
Sustainability Drivers

• Ethical and social ramifications

• Environmental implications – air pollution, climate change

• Economic – carbon policies, life-cycle savings, security, hedge against rising utility pricing

• Leadership role

• Reputation

• Student and employee recruitment

• Teaching, learning, and research role
Key Goals

- reduce life-cycle costs
- increase energy-water efficiency
- conserve energy and water
- reduce air quality contaminants and greenhouses gases
- improve energy security
Planning Context for Energy and Renewables
Climate Change

MITIGATION

- Reduce GHG emissions and carbon footprint
 - Energy and water efficiency
 - Conserve energy
 - Fuel switching and renewable energy
 - Bike/walk/bus to campus
 - Carbon sinks

ADAPTATION

- Planning for inevitable climate changes (warmer, wetter, wilder)
 - Energy Security
 - Flooding
 - Resilient skins
 - Emergency centre

Co-generation, District Energy, Hot Water, Renewable Fuel
In the fall of 2012, Dalhousie and the Agriculture College merged. A basic audit of electrical opportunities had been done for the College in 2010. To supplement this work, a report was completed in 2014 on renewable energy opportunities including pursuing biomass co-generation.
Background

• The current biomass boiler (28 years old) is at the end of its useful life.
• Small scale efficient biomass co-generation one of the 10 projects in the AC Renewable Energy Master Plan (2014). Other projects being explored solar, anaerobic digestion, wind partnership.
Background

• A COMFIT rate (17.5 cents a kW for electricity) was approved for this project in June 10, 2014 (Amended April 19, 2016 – to be 1 MW).

• A report on the life cycle of a number of heating systems for the campus was completed. (October 2014).

• A report on stakeholders’ perceptions of biomass fuel and plant operations was completed. (October 2014).
COMFIT

• Operational Date – No later than June 10, 2018 (4 yrs)

• Directive 2 & 4:
 – Priority on wood waste; descriptions of types and environmental conditions
 – Air quality requirements – 35 pm mg/m3 based on total thermal input – ESP needed
 – High efficiency
Project Goal

- Address facilities renewal costs of an existing end-of-life system
- Support university and community carbon reduction goals
- Promote and support existing and new sustainable biomass supply
- Connect research, teaching and operations
- Support local economic development
Fuel Supply

• Created Fuel Values Statement
• Engaged Stakeholders in open houses, RFI, and RFP
• RFP – included reference to type of supply wanted and allocation of up to 5000 tonnes for research type fuel
• Supply – Main amount waste wood residue (bark, shavings from local sawmill); Yard waste; willow and selective harvesting (research fuel)
• Silviculture – directed to selective thinning to increase biomass
What is special about Nova Scotia?
Agricultural Campus Heating Plant
Agricultural Campus – Heating Plant

Boiler #1 – 20,000 pph, HP steam boiler (furnace oil), 48 yrs old

Boiler #2 – 20,000 pph, HP steam boiler (furnace oil), 5 yrs old

Boiler # 3 – 12,000 pph, HP steam boiler (furnace oil), 36 yrs old

Boiler # 4 – 15,000 pph, HP steam boiler (Biomass), 28 yrs old
Agricultural Campus – Heating Plant

Peak Steam load – 27,500 pph

Annual Steam Production – 72,000,000 lbs

Annual biomass consumption – 8000 tons

June – Sept – 14hrs per day

Oct – May – 24/7 operation
AC Heating Plant – Operational Drivers for Renewal

Age – Biomass boiler is 28 years old

February 2014:
- Biomass boiler experienced internal cracks
- Out of operation for over 2 months
- AHJ imposed operating restrictions
- Significant additional cost of burning furnace oil
AC Heating Plant – Operational Drivers for Renewal

Biomass Storage & handling
- Poor access to chip bin
- chopping and sawing frozen chips
- auger blockages
- Ash disposal is cumbersome
DAL AC- Biomass CHP: Initial Concept

- Feasibility Study Concept: 1.7 MWe, 600 psi, Extraction Steam Turbine
- Enlarge the Existing Fuel Bin
- Larger Steam Boiler, Increased Operating Pressure
- Install the Turbine in a New Adjacent Building
- Sound Technical Concept

Fatal Flaw(s):

- A large capital investment in Steam Based Infrastructure
- Complexity of Operating a High Pressure Steam Turbine
- Changes to Staffing Requirement
Five (5) Options were evaluated:

1) Replace Biomass Steam Boiler (Status Quo)

2) Biomass Superheated Steam Boiler w/ Extraction Steam Turbine

3) Biomass Thermal Oil Boiler w/ 700 kWe Organic Rankine Cycle CHP

4) Biomass Thermal Oil Boiler w/ 968 kWe Organic Rankine Cycle CHP

5) Biomass Superheated Steam Boiler w/ Back Pressure Steam Turbine
DAL AC- Biomass CHP
Screening Report- Quantitative

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Alt 1</th>
<th>Alt 2</th>
<th>Alt 3</th>
<th>Alt 4</th>
<th>Alt 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Construction Capital</td>
<td>$6,100,000</td>
<td>$18,700,000</td>
<td>$15,900,000</td>
<td>$16,800,000</td>
<td>$12,500,000</td>
</tr>
<tr>
<td>2</td>
<td>Steam to HW Conversion Cost</td>
<td>$0</td>
<td>$0</td>
<td>$6,720,000</td>
<td>$6,720,000</td>
<td>$6,720,000</td>
</tr>
<tr>
<td>3</td>
<td>Steam Upgrades</td>
<td>$6,720,000</td>
<td>$6,720,000</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>4</td>
<td>Sum: Total Capital [1+2+3]</td>
<td>$12,820,000</td>
<td>$25,420,000</td>
<td>$22,620,000</td>
<td>$23,520,000</td>
<td>$19,220,000</td>
</tr>
<tr>
<td>5</td>
<td>Incremental Capital (Compared to Alt 1)</td>
<td>$12,600,000</td>
<td>$9,800,000</td>
<td>$10,700,000</td>
<td>$6,400,000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Annual Operating Costs</td>
<td>-$1,853,000</td>
<td>-$3,501,000</td>
<td>-$1,908,000</td>
<td>-$2,252,000</td>
<td>-$2,120,000</td>
</tr>
<tr>
<td>7</td>
<td>Incremental Operating Cost (Compared to Alt 1)</td>
<td>NA</td>
<td>-$1,648,000</td>
<td>-$55,000</td>
<td>-$399,000</td>
<td>-$267,000</td>
</tr>
<tr>
<td>8</td>
<td>Power Generation Sales Revenue</td>
<td>$0</td>
<td>$2,100,000</td>
<td>$980,000</td>
<td>$1,360,000</td>
<td>$770,000</td>
</tr>
<tr>
<td>9</td>
<td>Net Revenue (Compared to Alt 1) [7+8]</td>
<td>NA</td>
<td>$452,000</td>
<td>$925,000</td>
<td>$961,000</td>
<td>$503,000</td>
</tr>
<tr>
<td>10</td>
<td>Simple Payback (Compared to Alt 1) [5÷9]</td>
<td>-</td>
<td>27.8 yrs</td>
<td>10.6 yrs</td>
<td>11.2 yrs</td>
<td>12.7 yrs</td>
</tr>
<tr>
<td>11</td>
<td>GHG Emission Reductions (Compared to Alt 1)</td>
<td>-</td>
<td>8,900 tCO$_2$e</td>
<td>4,900 tCO$_2$e</td>
<td>6,300 tCO$_2$e</td>
<td>3,800 tCO$_2$e</td>
</tr>
<tr>
<td>12</td>
<td>Net Present Value</td>
<td>-$60,086,343</td>
<td>-$66,515,519</td>
<td>-$50,174,381</td>
<td>-$51,802,956</td>
<td>-$56,660,690</td>
</tr>
<tr>
<td>13</td>
<td>Net Present Value Compared to Alt 1</td>
<td>-</td>
<td>-$6,429,177</td>
<td>$9,911,961</td>
<td>$8,283,386</td>
<td>$3,425,652</td>
</tr>
</tbody>
</table>

[Images of DALHOUSSIE UNIVERSITY and FVIB ENERGY INC logos]
DAL AC- Biomass CHP Screening Report - Qualitative

<table>
<thead>
<tr>
<th>Criteria Descriptions</th>
<th>Weight</th>
<th>Alt 1</th>
<th>Alt 2</th>
<th>Alt 3</th>
<th>Alt 4</th>
<th>Alt 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency: Cogeneration + Heat</td>
<td>3</td>
<td>15</td>
<td>9</td>
<td>15</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Environmental Impact / Carbon Footprint Reduction</td>
<td>3</td>
<td>6</td>
<td>15</td>
<td>9</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Reliability of Supply (Elect & Thermal)</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>Safety</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>15</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Energy Security / Fuel Flexibility</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Support Sustainable / Local Bioenergy</td>
<td>3</td>
<td>9</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Lowest Capital Cost</td>
<td>2</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Revenue Generation</td>
<td>3</td>
<td>0</td>
<td>15</td>
<td>9</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Non Labour Annual Operating Cost</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>All In Net Annual Operating Cost</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Simple Payback vs. Oil</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Simple Payback vs. Biomass</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Transition from Existing Plant / Minimize Downtime</td>
<td>2</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Future Adaptability</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>15</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>84</td>
<td>109</td>
<td>138</td>
<td>144</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Ranking</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
DAL AC- Biomass CHP: Revised Concept

- Revised concept: 1.0 MWe Organic Rankine Cycle Generator
- Build a New Fuel Bin; Improve Delivery Logistics
- New Upsized Thermal Oil Boiler
- Install the ORC Turbine in New Adjacent Building
- Convert the Backup Boilers and Distribution Network to Hot Water
- No Change to Current Staffing Requirements
DAL AC- ORC Layout

- Condenser
- Regenerator
- Electric generator
- Pre-heater
- Evaporator
- Electric cubicles
- ORC turbine
- Feed Pump
DAL AC- Organic Rankine Cycle Generator

ELECTRIC POWER OUTPUT

BIOMASS POWERED BOILER (PRUNING OF BRANCHES, MARCS, HUSK, WOOD CHIPS, SAW DUST, BARK)

THERMAL LIQUID LOOP

DISTRICT HEATING

DRYING

REFRIGERATION

HEAT SINK

Turboden ORC units can be also fed with saturated vapor or superheated water.
DAL AC- Why an ORC Generator at DAL?

- High Turbine / Thermodynamic Cycle Efficiency
- Low Working Pressures; Unattended Operation
- Long Operational Life
- Large Turn Down
- Proven Technology
DAL AC - Biomass CHP LDC

Dalhousie Truro Plant Load Duration Curve - Full Conversion
Alternative 4 - Turboden 10 Electrical Production Mode

- ORC - Turboden 10
 - Thermal Input: 5,140 kW, 668 kW
 - Thermal Output: 4,087 kW, (@ 60-60°C)

- Fuel Oil Trim Heating
- Recoverable Heat Available from ORC System
- Biomass Thermal to Campus (13,800 MWh)

- Hot Water:
 - Peak: 7,000 kW, Energy: 15,000 MWh

- Steam:
 - Peak: 0 kW, Energy: 0 MWh

- Total:
 - Peak: 7,000 kW, Energy: 15,000 MWh

Future Available Heat

Fuel Oil Boilers 2 week shut down
DAL AC: Hot Water Conversion

- Hot Water Conversion was part of the Long Term Campus Energy Plan
- The Existing Campus Already used Hot Water for >95% of Campus Heating Requirement
- The Steam Distribution System was Nearing End of Useful Life
- Existing Oil Steam Boilers Could be Converted
- Twined Steam Lines Could Be Repurposed

DALHOUSIE UNIVERSITY

FVB ENERGY INC