

Upgrading CHP to Hybrid CHP

Nandini Mouli, Ph.D. eSai LLC <u>www.eSai.Technology</u>

Topics

- I. What are some gaps in the value-proposition of CHP?
- II. What is a Hybrid system and how will it meet the needs?
 - 1. What are the features?
 - 2. Benefits of Hybrids?
 - 3. Who are seeing the benefits?

III. Modeling outcome to show the value of CHP HybridsIV. Conclusions

I. What are some gaps in the usage of CHP?

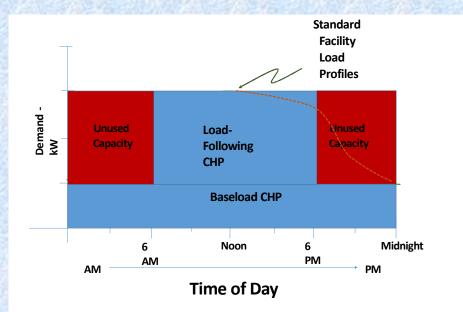
- Economics: CHP is not considered economical when there is not sufficient thermal load
 - CHP is sized to the thermal or electric load, rarely both. If sized to thermal load, a project could miss the electric opportunity. Many "commercial" clients do not have sufficient thermal load
 - Solar and other renewables can be alternates but they are not 100% ideal solutions either

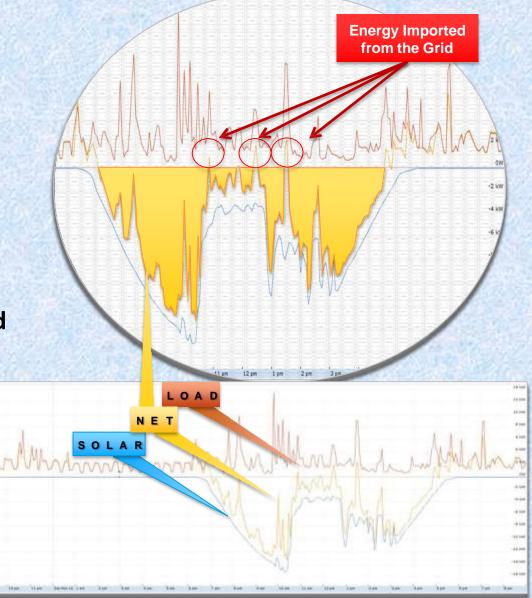
 How can CHP have a higher value proposition for all endusers?

II.1. Traditional Distributed Energy Resources (DER)

- CHP: "Base Loaded" Application
 - Natural gas, bio-gas, waste-to-energy
 - Reciprocating Engines
 - Turbines Micro and Combustion
 - Fuel Cells
- Solar: "Variable" Renewable Technology
 - Zero fuel cost and rapidly decreasing capital cost
 - "Passive system" requires little complex maintainance
- Energy Storage: "Flexible" Technology
 - Provides an ability to store electricity for later use
 - Capable of providing multiple discharges from 30 min. 6 hrs.

Majority of DER assets today are targeted at behind-the-meter, facility based benefits.

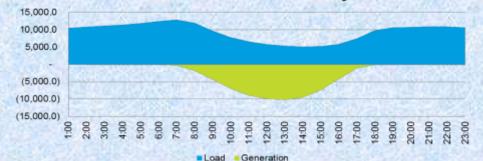



II. 1. Limitations of Individual DER- CHP

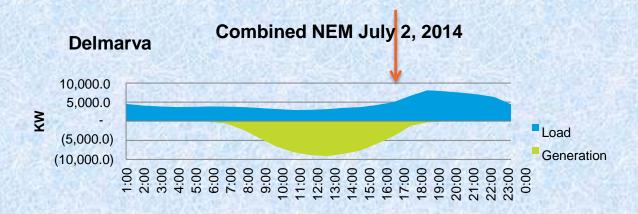
- For electricity "following" systems, CHP is optimized to "baseload" consumption
- However, base-loaded application provides little flexibility for other revenue streams outside its operating profile
- The unused capacity and capital for that capacity makes
 the CHP project uneconomical

II.1.Limitations of Individual DER -Solar

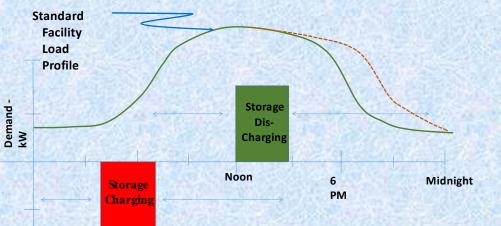
- Capacity factor Annual energy a typical PV system is ~14-18% of its rated capacity times 8760 hrs./yr. To produce any significant amount of energy, the capacity of the PV system will be larger than the minimum load of the premise.
- Intermittency because solar is intermittent, we see greater load/gen swings than with only the diversity of load

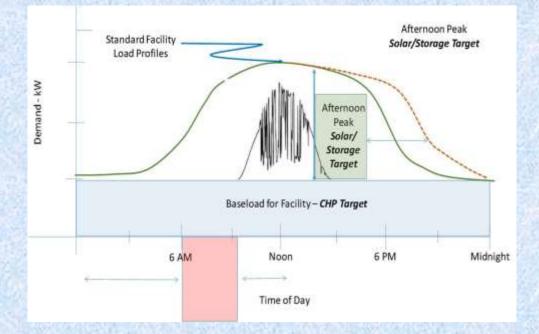


II.1.The Limitation of Solar (contd.)


System Winter Peak @ :08:00Hrs

Delmarva Combined NEM February 20, 2015


3. Output Profile – the output profile doesn't match the load profile of the premise or aggregate system load (shown)


II.1. Limitations of Individual DER -Battery Storage

- Storage can charge during off-peak; Discharge at "needed" time
- Pay-back is through energy-shifting, demand reduction and short duration back-up power
- Drawback is output is for a shorter duration mostly
- Units are still cost prohibitive

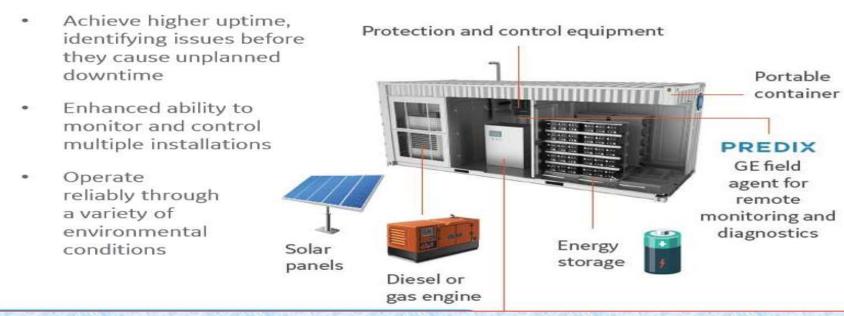
II.2. Benefits of Hybrid Systems


- Hybrids are combination of technologies to extend the system benefits:
 - CHP + Solar
 - CHP + Storage
 - CHP + Storage + Solar
 - CHP + Storage + Energy Efficiency

 Hybrid provides additional grid services through frequency response, voltage control, and ramping capabilities.

 Major benefit

II. 2. Benefits of Hybrid Systems - Value Stacks


II. 3. Who Is Building Hybrid CHP's?

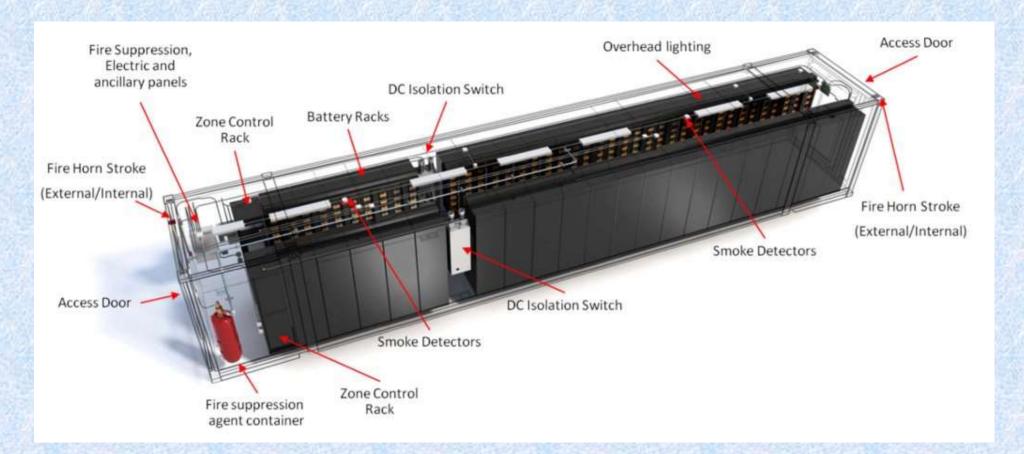
 Packaged digitally-connected CHP hybrid systems are available for clients with installation and financing challenges !

Modular, containerized, digitally-connected power solution

Benefits

- Lower installation and commissioning time and expenditures
- Reduced operating cost and emissions versus diesel systems
- Quickly scale output to capture growing demand

II.3. Who Has Seen The Benefits?

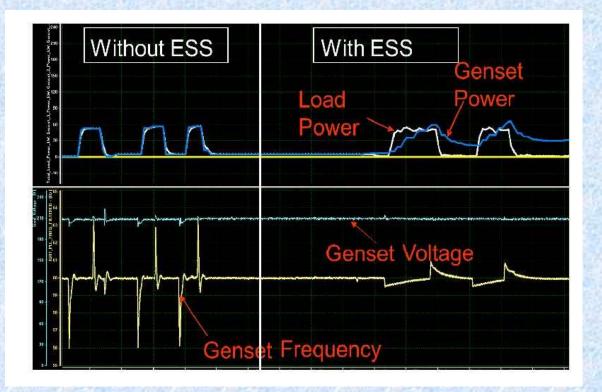

Brigham & Womans BBF Project

Caterpillar 4.0 mw Natural Gas Engine Hot Water Heat Recovery Exhaust Steam Boiler SCR/CO System Three Fire Tube Boilers In Service spring 2016

> Reference: Brigam and Woman's BBF Project; Waldron Engineering and Construction – Terence

Waldron, 3,'18

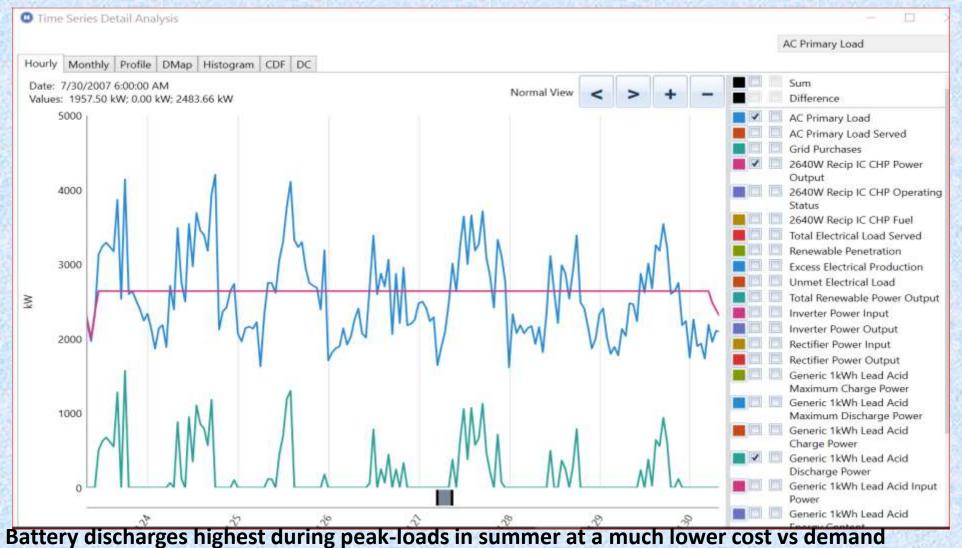
Typical ESS Container



Reference: Brigam and Woman's BBF Project; Waldron Engineering and Construction – Terence Waldron, 3,'18

System Benefits – Contd.

- Allows for step changes that many prime movers cannot handle
- Provides voltage stability
- Provides frequency stability
- Provides peak power control


Reference: Brigam and Woman's BBF Project; Waldron Engineering and Construction – Terence Waldron, 3,'18

III. Hybrid CHP– Modeling Methodology

- Modeled a large commercial 2000 kW facility such as a large university campus with grid only as the baseline
- Modeled same with 1) CHP only 2) CHP with battery storage, 3) CHP with solar 4) CHP with battery and solar
- Conclusion:
- For an university campus, CHP with PV and battery provides additional benefits at a slightly expensive system cost. The resiliency and peak-shaving benefits will overweigh the cost difference.

HYBRID CHP WITH BATTERY – POWER OUTPUT

Battery discharges highest during peak-loads in summer at a much lower cost vs demand charges. Due to this the yearly reserve for the site is reduced and hence the overall yearly electricity bills by 20-25%.

HYBRID CHP AND BATTERY – NET PRESENT COST

Conclusion: Net Present Cost for 15 year for the system is \$29.3 million from capital costs of CHP and battery. Highest expenses for this comes from fuel for CHP and O&M as in the break-down of expenses in the table.

BENEFIT OF HYBRID VALUE STACKS

		Large Commercial, Co	omparison of Fina	ncials with and	without Renewable Sourc	es	
System	Туре	Net Present cost	Rebates-utility	Grant-State	Federal Tax Credits	Net after financial assistance, \$	Comment
100% Grid	Layer 1	20,328,240	None	None	None	20,328,240	Baseline
2640 CHP + 10 kW grid	Layer 2	22,038,060	2,500,000	499,999	475,200	19,038,061	Good Option 1 Vs 100% grid Baseline
2640 kW CHP+806 kW PV+6631 kWh battery	Layer 3	26,207,160	2,500,000	499,999	1,824,888		Good Option 2 Vs 100% grid Baseline
2640 kW CHP + 17555 kWh battery, no grid,	Layer 4	29,372,030					Good Option 3 Vs 100% grid
				Nandini Mouli, eSai LLC, 12,11,17			

IV. Conclusion

Hybrid assets stack to meet multiple stakeholder needs:

- Customer:
 - Energy bill savings: \$/kWh savings; \$kW savings
 - Grid services
 - Reliable power
- Society:
 - Higher GHG reduction
- Utilities/Implementers:
 - Higher CHP project adoption
 - Opportunity to reduce project development timeline
 - More developers to work with; cost-competitive
 - Development of streamlined hybrid interconnection/permitting
- Hybrid solutions mitigate economic risks currently faced by CHP !!

THANK YOU !!

Contact

Nandini Mouli, Ph.D. **President/Founder** eSai LLC nandini@eSai.technology (443) 691 7664 www.eSai.technology