

University of Minnesota

Presented at the 27th Annual Campus Energy Conference

Presenters:

Scott McCord, University of Minnesota Willa Kuh & Laura Halverson, Affiliated Engineers

Biomedical Discovery District

Research Cluster

- \$282M initiative
- 3 new facilities
- 1 facility expansion
- Reduced energy and water use intensities

Driving Resource Efficiencies

Resource optimized building design – simultaneous reduction of energy demand and water use

Why Water Efficiency?

Minneapolis Water/Sewer Rates

Relationship of Energy and Water in Infrastructure

Relationship of Water and Energy in Buildings

University of Minnesota Building Requirements

Minnesota's "Buildings, Benchmarks & Beyond" Requirements

- Apply to all state-funded projects
- Follows Architecture 2030 Challenge
- Life cycle investment methodology
- 15 year return-on-investment standard
- 60% energy and CO2 use reduction (compared to state inventory)
- 30% building water use reduction compared to base design
- 50% irrigation reduction compared to base design

Water is recognized as a means of energy conservation

Cancer & Cardiovascular Research Building

- 280,000 sf research building
- Houses research on the role of chemical carcinogens in causing cancer and new cancer treatments
- A collaboration of the Masonic Cancer Center, the Lillehei Heart Institute and the Department of Biology and Physiology
- 25 research teams with an ambitious growth trajectory

© Paul Crosby Architectural Photography

Decision Criteria for Cost Analysis

Which to use, and when?

- First cost, short payback
- Obvious, "no brainers"
- Life cycle justified
- Address project financial goals
- Address project environmental goals
- Other

First Cost, Short Payback Elements

- Reduced flow water closets and urinals
- Water efficient glassware washers
- Reduced outside air
- Cooling coil condensate collection

First Cost Justified Outside Air

Animal Space Design Criteria:

- Initial -- macroenvironment (Guide for the Care and Use of Laboratory Animals)
- Final -- individually ventilated racks to improve microenvironment

Parameters	Initial	Final
Air changes per hour	15	10
Design temperature	70 F	70 F
Humidity requirements	30% RH	30% RH

Outcome -- 33% reduction in outside air with reduced:

- first cost
- water use for humidification, cooling and cooling tower evaporation
- energy demand

First Cost Justified Cooling Coil Condensate

- 320,000 cfm design load
- Calculated condensate:1.38m gpy

- 4.5 m gallons annual anticipated make-up
- 30+/-% make-up from condensate collection

Life Cycle Justified Total Energy Recovery Wheel

Sensible, latent heat recovery:

- Reduce summer cooling load to lower cooling tower consumption
- Reduce humidification by transferring latent energy through the wheel

Life Cycle Justified Vivarium Equipment

Equipment	Sustainable Options	Water savings per cycle	Energy Impact
Large Sterilizer	Chilled water cooled discharge	≈ 200 gallons	8.3 tons of cooling per cycle
Medium Sterilizer	Chilled water cooled discharge	≈ 160 gallons	8.0 tons of cooling per cycle
Cage & Rack Washer	Pre-wash re-uses final rinse water, side tank drain discharge tank	40 gallons 15-20 gallons	No additional energy impact
Tunnel Washer	No options selected	-	-

Life Cycle Tested Adiabatic Humidification System

Advantages:

- Energy savings -- no steam required
- Takes advantage of pre-heat from energy recovery wheel

Disadvantages:

- Only 70% of the water injected is adsorbed, leaving 30% discharged to drain
- Required reverse osmosis water discharging reject water to drain

Design: Water Use

Design: Potable Water Use

Peer Comparison

CCRB Facility (2013)

- 280,387 GSF
- Satellite district cooling plant (2700 tons)
- 60% occupied

MCB Facility (2002)

- 259,757 GSF
- Satellite district cooling plant (3900 tons)
- 100% occupied

Energy and Water: Design, Actual, and Peer

Energy and Water Use Intensities

Building Water Use Comparison

Irrigation Comparison

MCB

- 8.3 gallons/sf green space

CCRB

- 11.3 gallons/sf green space

Irrigation Water Usage

Cooling Tower Water Use Comparison

Tower water consumption ∞ tower load Condensate ∞ cooling load

- To date -- 400,000 gallons reclaimed
- Annual projection 800,000 gallons reclaimed

Take Aways

