

June 6-9 | Sheraton Centre Toronto Hotel | Toronto, ON

Natural refrigerant heat pumps for district energy systems

Jonathan Berney P.Eng – 5E3

The Challenge

- Blatchford airport redevelopment
- 30,000 residents
- 1.5 million m^2
- Target to be a sustainable, netzero carbon community powered by 100% renewable energy

- Neighbourhood Plan

Blatchford

From this.... To this

The Plan...District Energy sharing system

5th Generation Ambient DESS

- Heating
- Cooling
- Hot water heating

Planned Heating Cap:35MW (119MMbtu) Planned Cooling Cap:46MW (157MMbtu)

- Energy Source
- Geoexchange Borefield
- Peaking Boilers
- Sewer Heat Recovery

Energy Recovery

- Sharing of heating and cooling
- Investigating Recovery from ice Arenas, Adjacent District Heating Plants, Transit Electrical Rooms

- 1 x Ammonia Heat Pump (1MW/300TR) +2 future
- Geoexchange glycol Borefield
- 2 pipe water distribution loop
- Point of use residential equipment
- Target 1.5 Te of CO2 reduction per household

GEOEXCHAGNE BOREFIELD

- 570 boreholes
- 150m(500ft) deep
- Installed under storm water lake

SITE DISTRIBUTION

- Uninsulated HDPE
- 10-25C (55-77F) operating temp
- Water distribution system
- HDPE reduces cost and simplified installation vs 4 pipe steep system
- Burial depth 3m(10ft) for freeze protection

Typical Hybrid Utility ownership Model

- Utility owns energy generation and distribution
- Utility owns service connection and energy meters

Small building customer owns HP

- Difficulty accessing equipment in customer space
- More flexibility for builder/homeowner
- Lower first cost

Large building utility owns ETS HP

- Ensure quality system design & performance
- Utility responsible for design, operation and maintenance
- Reduce customer responsibility
- Better access for utility staff

Energy Transfer Station & qualified operating staff

The Ammonia Heat Pump

- Natural refrigerant GWP=0
- Fully welded steel construction
- Major components are serviceable
- Not subject to regulatory phase out
- 25+ year service life
- Easily rationalized total cost of ownership
- Very high COP

Seasonal operating conditions

- The Heat Pump is reversible it provides Cooling in Summer and Heating in Winter.
- In Winter The System is designed for 250 TR using Geo Thermal Ground Loop for Chilling and supply 10 C Fluid Source to the Housing Development to operating individual small scale residential heat pumps.
- In Summer Ground Source Geo Thermal to providing 25C
 Circuit for Summer Air Conditioning up to 350 TR.
- Ammonia flow is reversible from Plate to Plate changing from Chiller to Condenser. It eliminates any Brine/or Water Flow Changes in the Plate and any concern with Flow Rates.

MOTORIZED VALVE POSITIONS SHOWN IN DISTRICT HEATING MODE

MOTORIZED VALVE POSITIONS SHOWN IN DISTRICT COOLING MODE

Performance & Energy

- For both winter and Summer conditions COP ranged from 8.62-10.8
- Just the heat pump compressor circuit
- COP's achieved due to very low compression lift
- Summer 45 to 98 PSIA (2.17:1)
- Winter 108 to 196 PSIA (1.84:1)

MODEL	N8MII	Water-cooled					
		Heating			Cooling		
COOLING CAPACITY	[kBTU/H]	3300.7	2475.5	1650.3	825.2	463.1	3720.2
COOLING CAPACITY	[TR]	275.1	206.3	137.5	68.8	38.6	310
ABSORBED POWER	[HP]	144.9	110.0	75.2	40.4	20.0	134.8
HEAT REJECTION	[kBTU/H]	3669	2755	1842	928	514	4063
SPEED	[Rpm]	1451	1451	1451	1451	800	1475
LOAD	[%]	100	75	50	25	13.8	50
CONDENSING TEMP.	[F]	55	55	55	55	55	95
EVAPORATIVE TEMP.	[F]	17	17	17	17	17	60
SUCTION PRES.	[PSIA]	45.1	45.1	45.1	45.1	45.1	108
DISCHARGE PRES.	[PSIA]	98.1	98.1	98.1	98.1	98.1	196
DISCHARGE TEMP.	[F]	132	133	134	145	153	148
REFRIG. FLOW RATE (SUC.)	[CFM]	677	508	338	169	95	357
REFRIG. FLOW RATE (DIS.)	[CFM]	385	289	193	98.9	56.3	229
COP (COOLING)	[-]	8.95	8.84	8.62	8.03	9.08	10.8
COP (HEATING)	[-]	10.0	9.8	9.6	9.0	10.1	

Safety

- Plate HX result in low ammonia charge, less than 350lbs
- Inclusion of water/ammonia dilution tank for emergency relief system

Major components

Compressors

- Used in this application 30bar/435psi MAWP
- Products with 50bar/725psi MAWP available

Plate heat exchangers

- Used in this application 21bar/300psi MAWP
- Products with 62bar/900psi MAWP

Achievable Ammonia saturated condensing temperature ~100C/212F

Future residential options

- HC and CO2 technology
- Currently available in European and Asian markets
- Highly efficient if applied correctly
- GWP 0 to 1
- Not subject to regulatory phase out
- Mass production/adoption will improve price point

Source https://wernerantweiler.ca/blog.php?item=2020-12-14

Carbon Taxes in Europe

Carbon Tax Rates per Metric Ton of CO₂e, as of April 1, 2021

European Countries	as of April 1,	2021)			
	Carbon Tax Rate (per ton of CO ₂ e)		Share of Jurisdiction's Greenhouse Gas Emissions Covered	Year of Implementation	
	Euros	US Dollars			
Denmark (DK)	€23.78	\$28.00	35%	1992	
Estonia (EE)	€ 2.00	\$2.36	6%	2000	
Finland (FI)	€62.00	\$73.02	36%	1990	
France (FR)	€45.00	\$53.00	35%	2014	
Iceland (IS)	€29.72	\$35.00	55%	2010	
Ireland (IE)	€33.50	\$39.45	49%	2010	
Latvia (LV)	€12.00	\$14.13	3%	2004	
Liechtenstein (LI)	€85.76	\$101.00	26%	2008	
Luxembourg (LU)	€20.00	\$23.55	65%	2021	
Netherlands (NL)	€30.00	\$35.33	12%	2021	
Norway (NO)	€58.59	\$69.00	66%	1991	
Poland (PL)	€0.07	\$0.08	4%	1990	
Portugal (PT)*	€24.00	\$28.26	29%	2015	
Slovenia (SI)	€17.30	\$20.37	50%	1996	
Spain (ES)	€15.00	\$17.67	3%	2014	
Sweden (SE)	€116.33	\$137.00	40%	1991	
Switzerland	€85.76	\$101.00	33%	2008	

Source: https://taxfoundation.org/carbon-taxes-in-europe-2021/

USA natural gas Bans

- More than 50 cities have banned natural gas infrastructure in new buildings
- At federal level government plans to transition 300,000 buildings to "carbon pollution free electricity" by 2032

Net-zero but at what cost \$\$\$

Total Other Enbridge Charges	\$11.54
HST*	\$1.04
Late Payment Charge	\$2.49
Rate Adjustment	\$7.75***
Rate Adjustment	\$0.26***
OTHER ENBRIDGE CHARGES	•

IN THE OWNER OF THE PARTY

enbridgegas.com

Page 2 of 2

20.5311d/m³ 0.3793-¢/mª 20.1518¢/m³

WHAT DO I NEED TO KNOW?

Natural gas rates changed on Apr. 1,2022. Find more information at enbridgegas.com/residentialrates, enbridgegas.com/businessrates or in the notice

The federal carbon charge has increased effective April 1. 2022. Visit enbridgegas comfederalcarbonprogram for more

Net-zero but at what cost \$\$\$

- Costs are delivered less HST (tax)
- DESS HVAC systems COP ~4.75, Natural gas furnace COP ~.92
- My utility cost rate gas vs electric
- Projection of carbon tax till 2030

- Assumed electrical rate inflation at 2.5% and 4% per year
- Initial equipment cost neglected
- Heating only
- Annual service fee for DESS connection not included

Practical Challenges

- This concept not easily retro-fitted to existing communities.
- Requires co-operation between many parties to design and implement.
- Common perception that this concept is not financially viable.
- Availability of Clean and cheap electrical power.
- Need for electrical grid upgrade/expansion to support the concept of electrification on a large scale.
- Feasibility of access to heat source/sink

Thank you!

- Community of Blatchford
- Andrew Byrnes
 P.Eng, Pinchin
 Ltd

Thank You!

- Jonathan Berney P.Eng
- CIMCO Refrigeration

TOROMONT

jberney@toromont.com

СІМСО