Leveraging Aquifers to Support Sustainable Energy Infrastructure

Aquifer Thermal Energy Storage (ATES)

- Aquifer technology has existed for about 25 years
- Well-established in the Netherlands over 2,500 projects
- Optimal in climates with cold winters and hot summers
- Requires low groundwater velocity
- No groundwater consumed
- Balanced injection and withdrawal rates
- Heat stored in the aquifer in the summer
- Heat extracted from the aquifer in the winter

ATES – How it Works

ATES Summer Operation – Cooling

- Open loop with separate warm and cold stores
- Seasonal reversal of warm and cold withdrawal/injection
- Hydraulically balanced

- Seasonal thermal energy storage enabled by:
 - High heat capacity of groundwater vs. aquifer skeleton
 - Dynamics of fluid flow in porous media
 - Low temperatures, low advection losses
 - Hydraulic modeling and management of aquifer

ATES Operating Modes

Summer Mode

Hydrogeologic Due Diligence – Ford Site

Hydrogeologic Due Diligence 3D Groundwater Flow Model

Hydraulic Head

Jordan Aquifer

St. Peter Aquifer

Shakopee Aquifer

Regulatory Due Diligence Ford Site, Saint Paul, MN

- **ENVIRONMENTAL:** Aquifers below the St. Peter sandstone are unlikely to have been affected by anthropogenic contamination from historic land uses at the Ford Site.
- FEDERAL Underground Injection Control: ATES wells are Class V injection wells under the UIC program administered by the US EPA. EPA retains primacy over the UIC program in Minnesota.
- **STATE MDNR Appropriation Permit:** Groundwater withdrawals > 10,000 gpd require an appropriation permit from the DNR, even for nonconsumptive use.
- STATE MDH Groundwater Thermal Exchange Device and Well Permits:
 - Minnesota Statute 103I.621 ATES system can be developed; MDH permit required
 - Minnesota Administrative Rules Ch 4725 Wells and Borings

District Aquifer Thermal Energy Storage (DATES) Distributed submersible well pumps allow reduced pipe size and cost

Ford Site Redevelopment Saint Paul

- 135 acre site
- Roughly 5 million square feet of commercial, retail, and residential
- Net-zero carbon goals
- Coordinated discussions between City, land owner, developer, and local utilities

Proposed District Energy System

- About 5,000 GPM aggregate flow
- Heating and cooling site buildings
- Fresh water district energy loop serves the buildings
- Focus on commercial and multi-family residential
- Potential of adding single-family homes
- Phased approach to coincide with site development
- Sets the foundation for net-zero carbon development

Financial Benefits

- Third-party financed 100% debt financing
- Equivalent first-installed costs for developers
- Lower life-cycle costs for building owners
- Reduced maintenance
- Reduced labor costs
- Smaller building footprint
- Simpler mechanical systems
- Lower tenant energy costs

Environmental Benefits

Xcel Current Profile - 881 lbs CO2/MWh

Scenario	EUI Basis	Tons of CO2	% Savings
Business as UsualCode		9,261	37%
ATES	SB2030 - 80%	5,852	5770

Xcel 2030 Profile - 521 lbs CO2/MWh

Scenario	EUI Basis	Tons of CO2	% Savings
Business as UsualCode		8,543	59%
ATES	SB2030 - 80%	3,461	59%

Environmental Benefits

- Differing financial timelines (8-year vs 30-year)
- More complicated cost allocation
- Competing site priorities (affordable housing, infrastructure investment)
- Uncertainty of a new technology
- Inexperienced engineers, architects, and contractors
- Complicating the Developer's program
- Submetering

Opportunities for Improvement

- More detailed educational materials before the developer is engaged
- Simplified financial models and financing plans
- Eliminate uncertainty
- Match the traditional utilities' rate structures and billing strategies
- Quickest path to the second system:
 - Install the first

The Silver Lining Towerside District Energy (Minneapolis, MN)

The Silver Lining Hillcrest Redevelopment (Saint Paul, MN)

Thank You

Mark Worthington President mark.worthington@underground-energy.com

Nina Axelson Vice President nina.axelson@ever-greenenergy.com

