Advantages of Reciprocating Engines (RICE) and Boilers for Variable Steam Demand

Presented by:

Ryan Voorhees, PE, CEM& Ed AlcortaCHA Consulting, Inc.INNIO

Comparing CHP Technology

- Gas turbines (GTs) attractive/popular option for base-load and central plant power needs
- Compared to GTs, reciprocating engines have less steam capacity per kWe.

- Over the years, RICE CHPs have increased efficiency through technology improvements.
- This presentation focuses on variable steam loads and when RICE/Boiler combination outperforms gas turbines.

Application Selection

	Recip Engine	Steam Boiler	Gas Turbine
Capacities	10kWe to 18MWe	-	500kWe to ~500MWe
Thermal Outputs	LP Steam, Hot Water	LP or HP Steam	LP or HP Steam
Functionality	Fast response to step load	-	Fast response to step load
Start up time	Fast	Slow	Slow
Gas Pressure	1-75 PSIG	1-75 PSIG	100-500 PSIG
Black Start	Battery or Comp. Air	-	Aux Generator
CHP Installed costs (\$/kWe)	\$1,500- \$2,900	-	\$1,200- \$3,300

JENBACHER

INNIQ

Equipment Selection Considerations:

- Electrical capacity required
- Steam rates and pressures (LP or HP)
- Recip engine hot water uses:
 - Hot water loads 190 230 °F
 - Converting steam equipment
 - Absorption chiller
- Site gas pressure and compression needs/power

Performance Considerations

	Reciprocating Engine	Steam Boiler	Gas Turbine
Rated Electric Efficiency (HHV)	27-41%	-	24-36%
Rated Overall Efficiency (HHV)	77-80%	>80%	66-71%
Part Load Thermal Efficiency	Ok	Ok	Poor
Hot inlet air efficiency/output Impacts (rule of thumb)	-1% for every 10°F above 77°F*	+0.25% for every 10°F increase	-4 to -5% for every 10 to 12°F increase

*Certain engine sizes and configurations may have minimal derate

- Poor gas turbine part load performance
 - GTs can throttle power output by reduce reducing combustion temperature, which reduces efficiency and increases emissions.
- Increased inlet air temperatures degrade gas turbine performance
 - More power is required to compress hot, less-dense air
 - Electric prices are highest in the summer during lowest performance for CHP.

CHP Sizing Considerations

- Important to size CHP based on site thermal loads to maximize efficiency
- Thermal output typically represents 60-70% of the CHP inlet fuel energy
- HRSG duct firing for additional steam needs to offset boilers

CHP Technology Evaluation Process

- Step 1 Determination of thermal & electrical load profile of facilities or defined boundary to be served (define: min/max/base)
- **Step 2** Define design/evaluation criteria of project
 - Financial, environmental, spatial, availability, redundancy, simplicity/operability
- Step 3 Align array of (thermal/electrical) outputs for selected technologies to efficiently satisfy dynamic profile of loads served considering constraints of respective connection to macro grid (feeder) & host facility

Gas Engine Technology

"Reciprocating engine technology has improved dramatically over the past three decades" – EPA CHP Partnership

Today's engines' electrical efficiencies and power densities change rules of thumb for CHP w/ steam

Published vs On-Site Performance

Electrical Power Ratings at Site Conditions, kWe

		4.3MW Recip	4.6MW GT	5.7MW GT
1	Published data, @ genset terminals, kWe	4373	4600	5670
2	At 1500' site altitude, 59F temp, kWe	4373	4355	5370
3	Site installed: 59F, 1500', air/exh losses, kWe	4373	4205	5180
4	Installed "Hot day" site conditions (95F), kWe	4373	3565	4435

Gas Turbines lose output when site electrical demands are often higher, and/or utility pricing is highest

JENBACHER

Published vs On-Site Performance

Heat Rate at Site Conditions, BTU/kWh (LHV)

		4.3MW Recip	4.6MW GT	5.7MW GT
1	Published data, @ genset terminals	7,530	11,630	10,375
2	Site installed: 59F, 1500', air/exh losses, "nominal" tolerance	7,720	12,035	10,740
3	Installed "Hot day" site conditions (95F)	7,720	13,770	12,284

Gas engine electrical efficiency advantage increases at installed & hot day conditions

JENBACHER

INNIQ

Whole System Efficiency – steam only CHP

	Steam production method	Feedwater heating method
4.3MW Recip	HRSG + aux boiler	Engine hot water circuit or Economizer
4.6 MW GT	HRSG, HRSG + DF	Economizer
5.7MW GT	HRSG, HRSG + DF	Economizer

Recip Advantages:

JENBACHER

- Flexible: Can "de-couple" thermal and electric production
- Higher total efficiency at low-mid steam demands (~2.3 tons/hr per MW)

INNIQ

 Ideal for variable steam loads (i.e. site thermal profiles result in partial utilization)

+ thermal output (including boiler)

Whole System Efficiency – with Engine Hot Water

 Capturing hot water for additional site use can increase engine efficiency substantially

JENBACHER

INNIQ

*150psig saturated steam, all engine HT circuit heat used

Self-Generation Cost Example – w/ Engine Water

JENBACHER

INNIQ

For example purposes only – each case will vary based on project specific details

O&M - 1.6cents/kWh (recip),

O&M comparisons estimated

All engine HT circuit heat is used

GT and boiler economizers not

from EPA CHP handbook

1.3cents/kWh (GT)

\$4/MMBtu NG price

considered

Data Analysis - Customer Example

JENBACHER

INNIQ

Typical customer weekly electric & steam data shown, using hourly interval data

Site considerations:

- High utility demand charges
- <100psi gas pressure
- Steam only no hot water
- Variable electric & steam
 loads favors smaller power
 nodes & turndown flexibility

Further review of annual hour-by-hour data reveals best customer fit may be recips...

CHA

Customer Example – Annual Summary

Thank you. *Questions?*

Ryan S. Voorhees, P.E., CEM

Project Manager CHA ~ *design/construction solutions* 315-257-7189 (office) 315-766-6699 (cell)

One Park Place 300 South State Street, Suite 600 Syracuse, NY 13202 <u>rvoorhees@chacompanies.com</u> <u>www.chacompanies.com</u>

Eduardo Alcorta

Sr. Energy Consultant Jenbacher gas engines T +1 262 409 5301 M +1 262 409 5301

1101 W St. Paul Ave Waukesha, WI 53188, USA Eduardo.Alcorta@ge.com www.innio.com

