
Campus Energy 2021 BRIDGE TO THE FUTURE Feb. 16-18 | CONNECTING VIRTUALLY WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16

Achieving 80% Carbon Reduction at Simon Fraser University

Paul Holt P.Eng., CEng MIET, CEM Ivana Safar MSc.

Campus Energy 2021 BRIDGE TO THE FUTURE Feb. 16-18 | CONNECTING VIRTUALLY WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16

Q&A Will Not Be Answered Live

Please submit questions in the Q&A box. The presenters will respond to questions off-line.

Topic Introduction

- A journey to achieving up to 80% GHG emissions reduction at Simon Fraser University (SFU)
- Development, construction and initial start-up of a low-carbon central energy plant (biomass) – in operation since October 2020
- Infrastructure shared by SFU and adjacent residential development
- Minimal impact on SFU's existing infrastructure – replacement of one natural gas boiler with 10 MW heat exchanger

Burnaby Mountain DEU - What, Where, How

UniverCity Community and SFU Campus, Burnaby, BC

 Residential development adjacent to Simon Fraser University campus

DE from Idea to Implementation

- Low carbon DE initiated by SFU Community Trust, a master developer of SFU Endowment Lands
- DE as one of the means to help achieve GHG reduction targets
- All new buildings will be connected to DES
- Privately developed utility regulated by a provincial regulatory authority

Burnaby Mountain District Energy Utility

Original Concept: UniverCity Only

- Initially residential area only
- 3 MW biomass + 9 MW NG peaking
- 23 residential buildings connected

Final Concept: UniverCity + SFU

- Residential area and SFU campus
- 13.5 MW low carbon energy (biomass) serving SFU and residential development
 - NG peaking for residential customers
- SFU providing its own NG peaking and back-up

SFU Connecting to BMDEU – Key Drivers, Opportunities

Key Drivers

- SFU internal goal and provincial requirement to reduce GHG emissions
- Public sector required to pay for GHG offsets
- Opportunity to start replacing aging thermal energy generation equipment at SFU

Opportunities

- Timing of low-carbon DEU development at UniverCity
- Opportunity to connect to receive green energy, while utilizing existing infrastructure for peaking and back-up

SFU Connecting to BMDEU – Benefits

- Economies of scale
- No upfront Institutional capital required
- Clear and transparent delivery model and pricing (provincial rate regulation)
- Risk / reward mechanism in place to maximize performance and efficiencies
- Risk and liabilities transferred to a third party
- ~75% Institutional GHG reduction achieved by one capital project

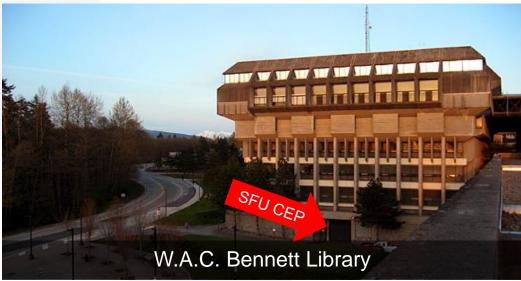
UniverCity DEU (Up to November 2020)

- 23 buildings, (2.1 mmsq.ft)
- DE system currently at ~57% buildout (December 2020)
- Full build out by 2024

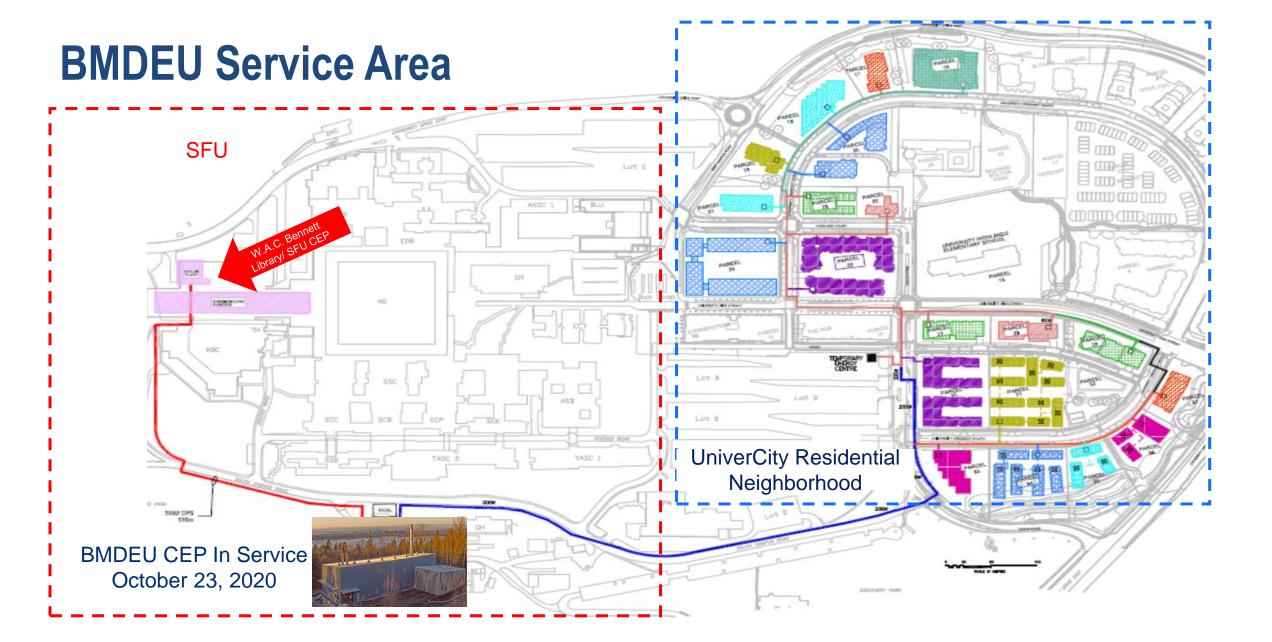
Technical Specifications

- 2 temporary energy centers (TEC's 1 and 2) using Natural Gas boilers (2.3 MW and 6 MW respectively)*
- 1.8 km of piping installed to date
- 11 buildings connected to date
- 2019 annual energy produced 11,500 MWh or 41,400 GJ
- 2019 annual emissions 2,070 tCO₂

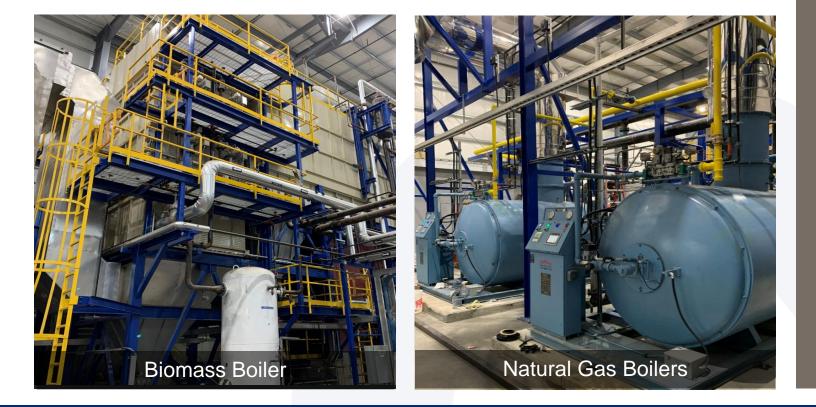
* BMDEU CEP in Service, TEC's decommissioned November 2020



SFU Burnaby Campus

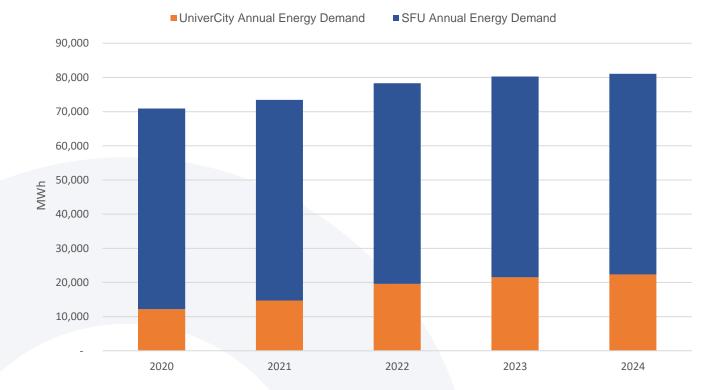

- ~25,000 students, ~5,000 faculty and staff
- SFU Burnaby campus is a complex of interconnected academic buildings + student residencies ~3.5 mmsq.ft
- Central DEU with 5km of piping (mainly in building, some direct buried)
- SFU Central Energy Plant (CEP), located under W.A.C. Bennett Library
- 4 NG boilers installed capacity* 31.8 MW
- 2019 energy produced 58,731 MWh or 211,430 GJ
- 2019 annual emissions 10,571 tCO₂

* Originally 5 NG boilers, 1 x NG boiler removed to make way for ETS



BMDEU Central Energy Plant

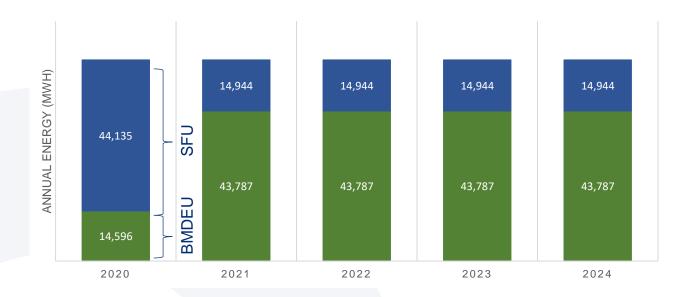
- 13.5 MWt Biomass boiler
- 2 x 3 MWt natural gas boilers providing peaking and back-up for UniverCity only
- 3rd Bay provided for future use (Ultimate NG Capacity 12 MW)
- 1.7 km (trench) of new district piping installed connecting SFU and UniverCity with CEP


BMDEU Energy Transfer Station at SFU

- 10MW (contract rated) Energy Transfer Station replaced one end of life SFU NG boiler
- Provides baseload low carbon (green) energy for SFU CEP
- Expected to provide for up to ~75% of SFU annual energy consumption
- SFU provides peaking with own NG boilers

Expected Customer Energy Profile

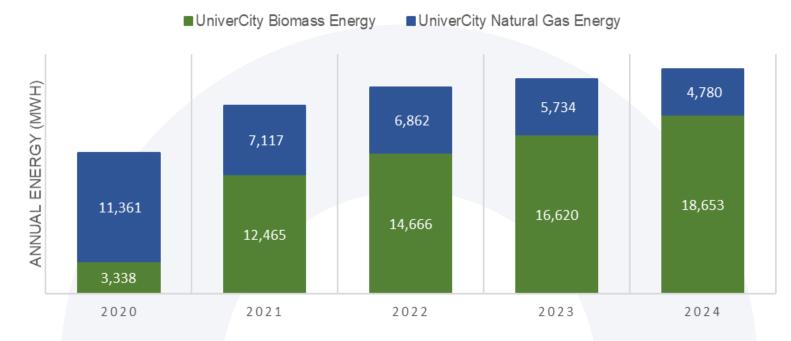
ANNUAL ENERGY DEMAND



SFU Energy Profile for BMDEU

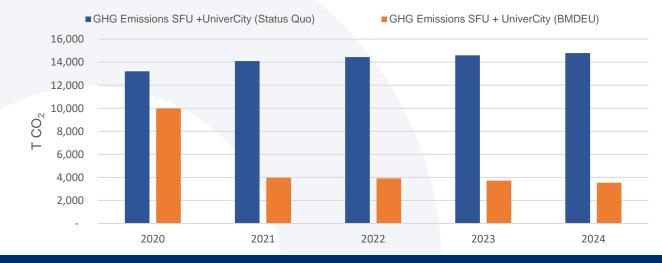
- SFU load forecast is stable for next few years. Biomass does have more capacity, should growth occur
- Expected to achieve ~75% of GHG savings over NG baseline
- Thermal models show SFU NG boilers only in operation for 4 / 5 months of the year with biomass as baseload
 - This allows for redeployment and optimization of existing SFU FTE's

SFU ENERGY PROFILE AND SOURCE


SFU Biomass SFU Natural Gas

UniverCity Energy Profile for BMDEU

UniverCity at full build out (2024) is expected to achieve ~80% GHG reduction over NG baseline


UNIVERCITY ENERGY PROFILE AND SOURCE

Expected Emissions Profile for BMDEU

GHG EMISSIONS COMPARISON (TCO₂)

Lessons Learned

Opportunities

- Phasing:
 - Greenfield DE development phasing to meet the load growth
 - The opportunity for optimization and load scaling by managing the phasing of a low-carbon energy source
- Efficient and innovative delivery model (scope and format) to benefit all interested parties
- Public sector immediate GHG emission savings without upfront capital and significant upgrades to the existing infrastructure, all with a balanced risk transfer to a third party

Challenges

- Permitting allowing adequate time for permitting process (various agencies), especially with a new concept and technology
- Managing complexities of a multi-scope, multi-party project delivery
- Well defined Business as Usual (Status Quo) scenario

THANK YOU

Paul Holt P.Eng., CEng MIET, CEM Regional Director of Operations, Canadian Utilities Corix Utilities Inc. Paul.Holt@corix.com Ivana Safar MSc. Director, District Energy Development Corix Utilities Inc. Ivana.Safar@corix.com

Campus Energy 2021 BRIDGE TO THE FUTURE Feb. 16-18 | CONNECTING VIRTUALLY WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16

