

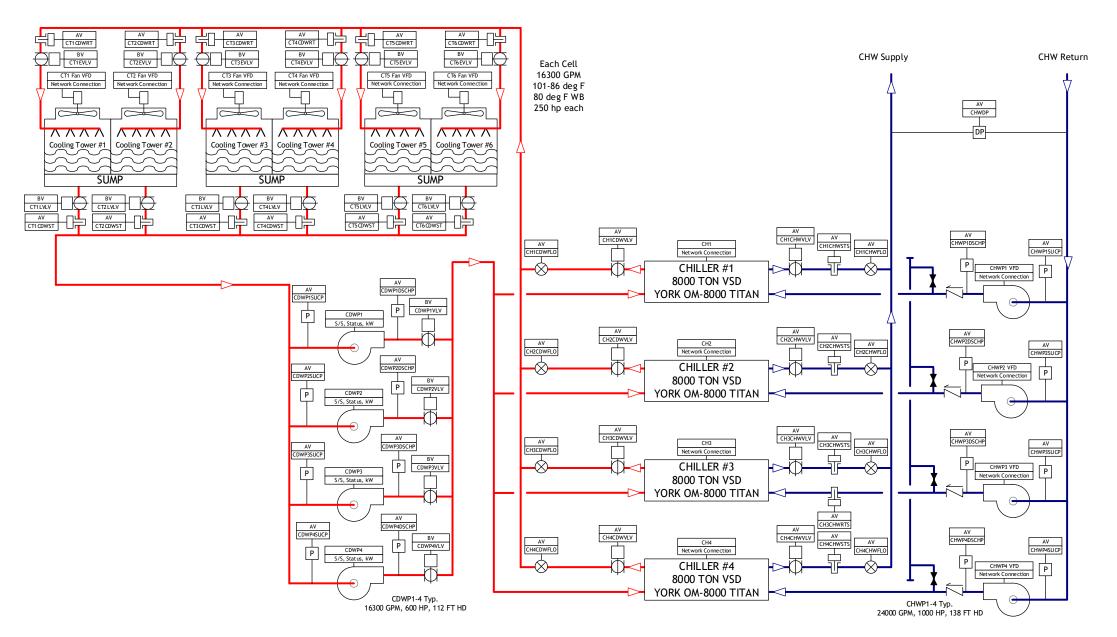
Thermal Energy Corporation (TECO) – the Energy Behind What's Next

Mike Manoucheri, P.E., TECO Ben Erpelding, P.E., Optimum Energy

Q&A Will Not Be Answered Live

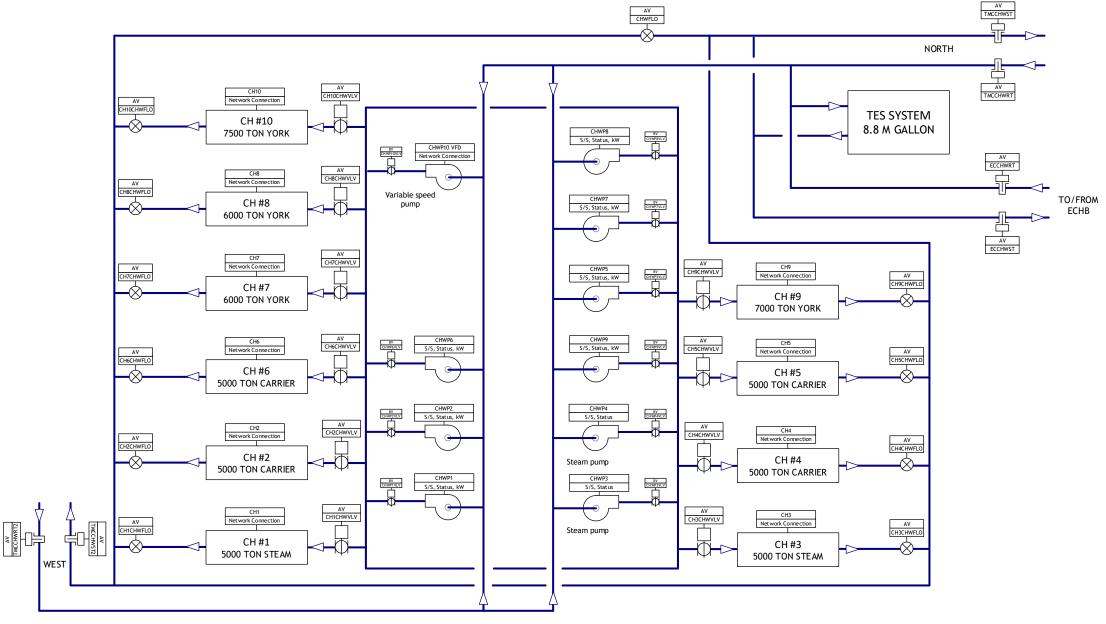
Please submit questions in the Q&A box.

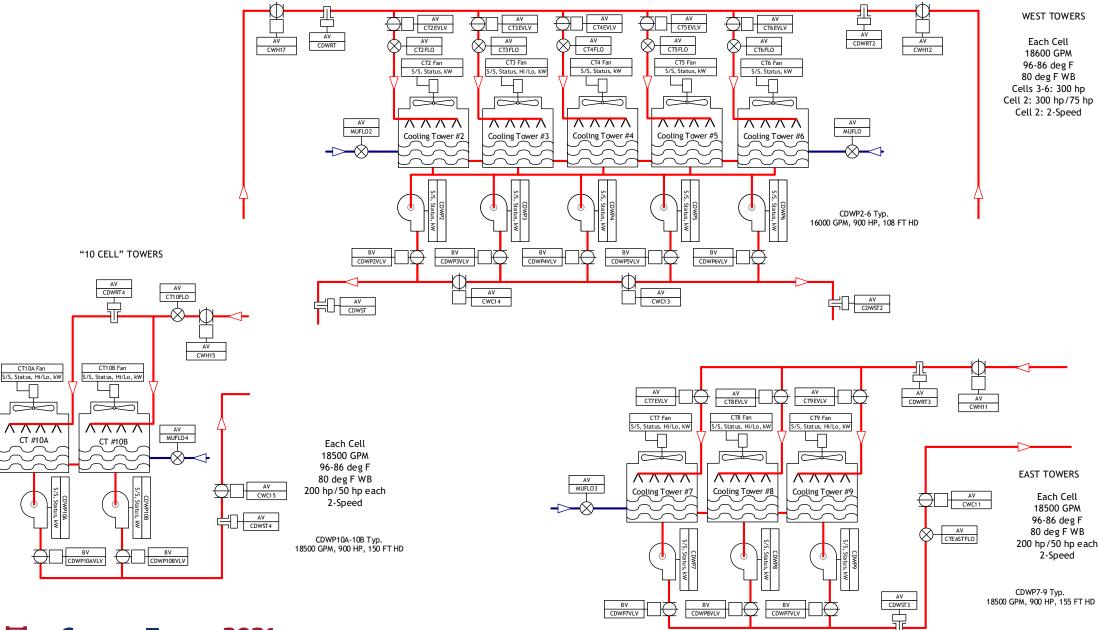
The presenters will respond to questions off-line.


TECO and the Texas Medical Center

Campus Energy 2021

BRIDGE TO THE FUTURE
Feb. 16-18 I CONNECTING VIRTUALLY
WORKSHOPS I Thermal Distribution: March 2 I Microgrid: March 16


- 120,000 tons of chilled water (300,000,000+ ton-hrs /yr)
- 27 chillers, 35+ miles of thermal piping
- 48 MW combined heat and power plant
- 23.7 million sq ft of conditioned space
- 50 buildings
- 10 million patient encounters annually
- 180,000+ surgeries annually
- 9,200 patient beds





Growth

Peak chilled water demand has increased ~ 9000 tons over last 4 years

Projected chilled water demand to increase ~9000 tons over next 3 years

2020 Peak Load at 78,600 tons

Solution – it is much more cost effective to be more efficient than to add power production capacity

Through energy efficiency, reduce 2 Megawatts of load during Peak Grid days

- 1. Lower kW allowing entire plant to stay within load capacity of Co-Gen
- Avoid spot purchasing of kW
- 3. Avoid unreliable grid power
- 4. kWh savings every day of year with < 2 year simple payback
- 5. Avoid demand charges associated with Coincident Peak Days \$14,350/MW

Optimization

- Phase 1
 - ECHB chiller panel tuning
 - ECHB lift optimization
 - ECHB cooling tower fan speed and staging optimization

Lift = Leaving condenser water temperature minus the leaving chilled water supply temperature

For example, a chiller selected at 40 deg F at 85-95 deg F would have a design lift calculated as 95 - 40 = 55 deg F

Optimization

- Phase 2
 - CP lift optimization
 - Updated chiller staging
 - Update chilled water pump control
 - Updated tower and condenser water pump staging
 - Compliance and Health Reporting

Reducing Lift – lowering condenser water delta T

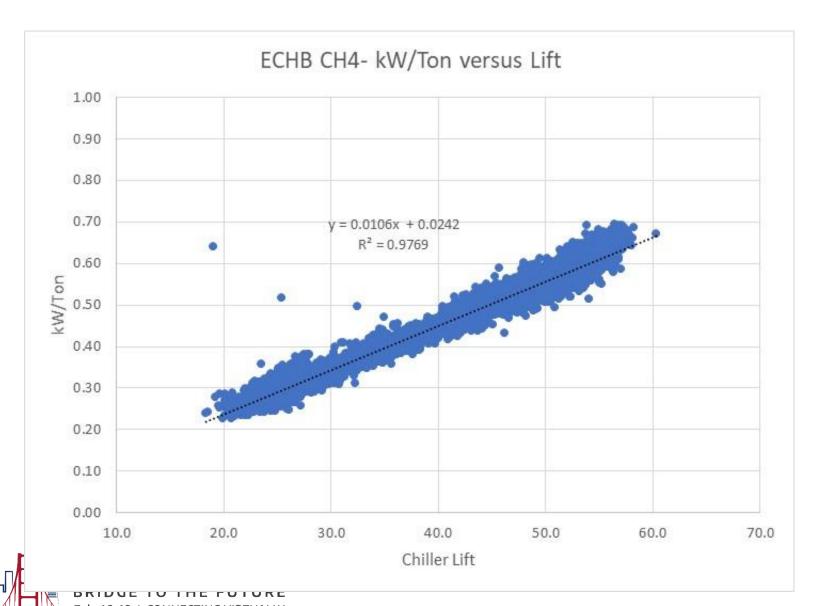
Maintaining a 16,000 gpm CDW flow set point

11.0 DEGF

13

After (9.1 deg F delta T)

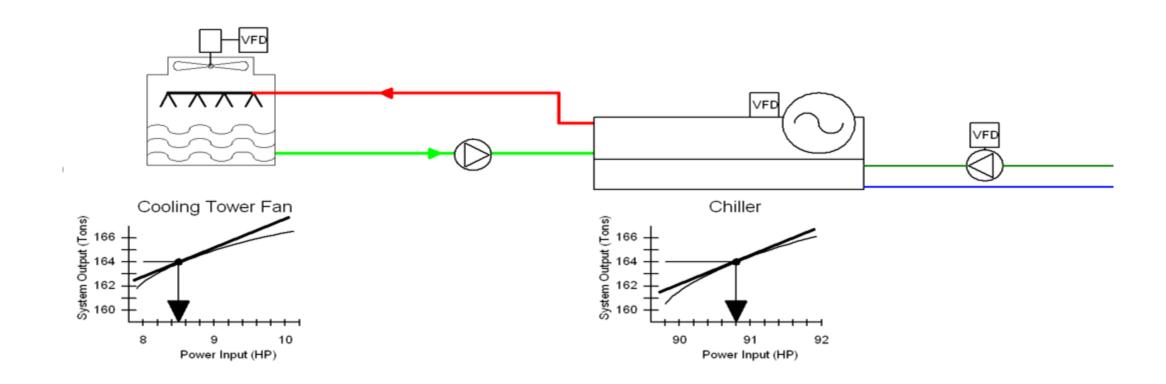
Condenser Water Overview



Before (11.1 deg F delta T)

67 PSI 523 DEGF

Reducing Lift


Reduction in Lift by 2 deg F

kW/ton savings = 0.0106 x 2 = 0.0212 kW/ton

3 x 6000-tons x 0.0212 kW/ton = 382 kW

Optimization of Tower Fan Speed Using Power Relationships

Phase 1 Energy Savings – spot reading

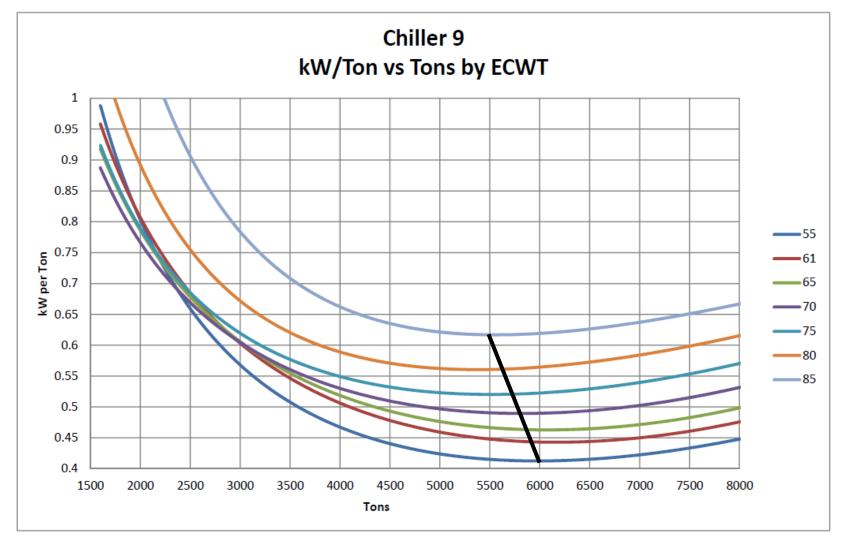
Running 6 cells at 70% speed instead of 3 cells at 100% speed to achieve the same or better approach temperature (~ 5 deg F)

 $6 \times 70 \text{ kW fans} = 420 \text{ kW}$

3 x 185 kW fans = 555 kW

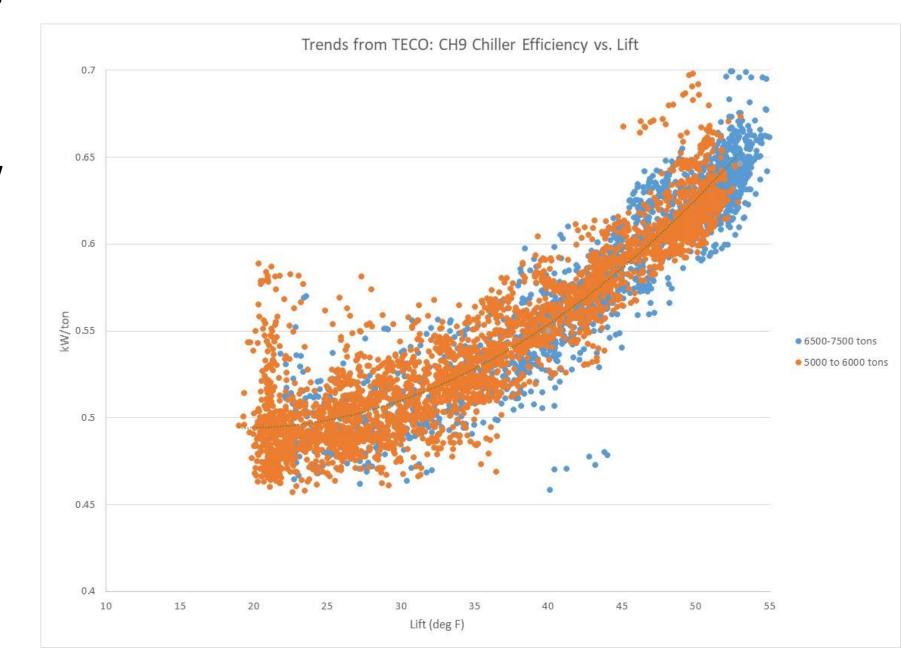
Tower Fan Savings = 555 - 420 = 135 kW

Previous slide (reducing throttling) = 382 kW

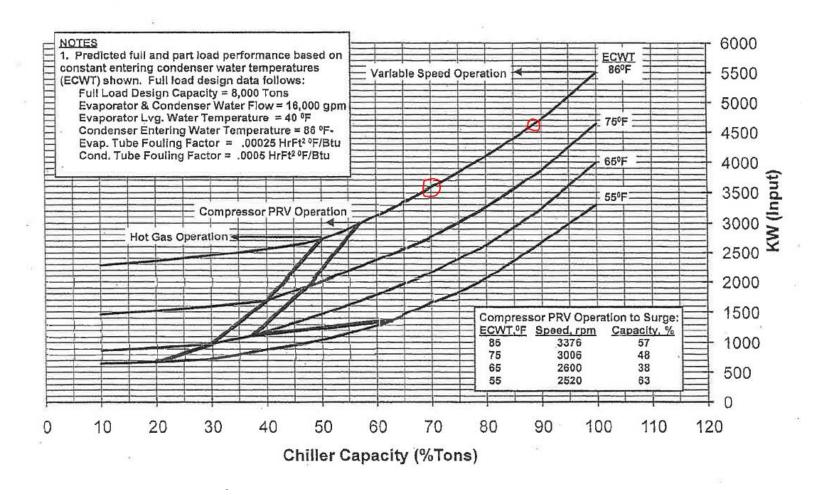

Condenser Pumps' Savings = -15 kW x 3 = -45 kW

Total savings = 135 + 382 - 45 = 472 kW

Staging Chillers



Staging Chillers


 Efficiency at low vs. higher loads is nearly identical per deg F of lift

Run 4 ECHB chillers at 7050 tons instead of 4 ECHB chillers at 5600 tons and CH8 at 5800 tons (86 deg F ECWT).

York OM-8000 R-22 Electric Drive Titan Chiller Predicted Full & Part Load Performance Motor KW vs Capacity (% Tons)

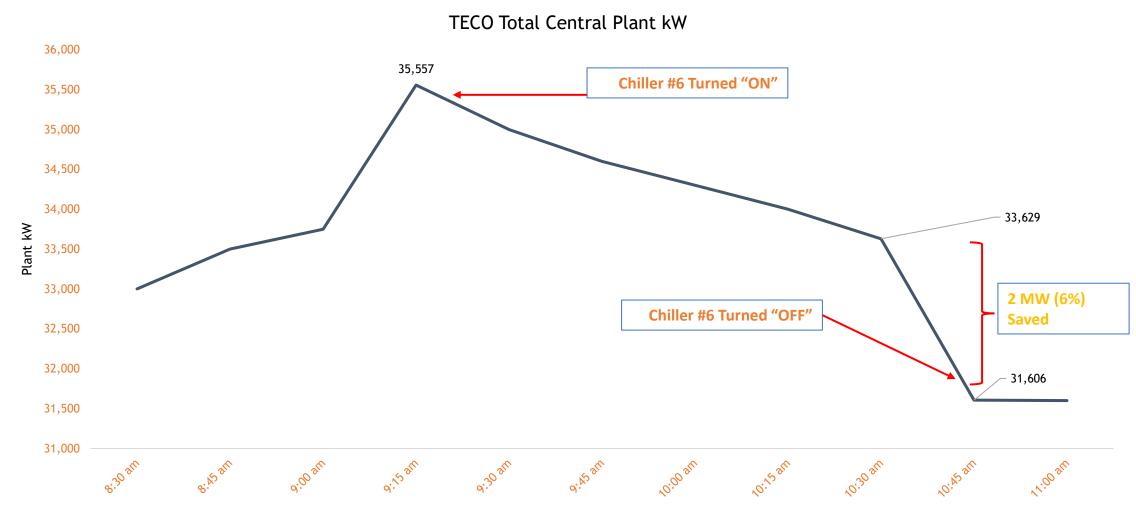
ECHB chiller at 7050 tons and 4600 kW = 0.652 kW/ton

ECHB chiller at 5600 tons and 3600 kW = 0.643 kW/ton

CH8 at 0.615 kW/ton and 5800-tons is 3567 kW.

4 x ECHB chillers at 7050 tons (4600 kW) = 18,400 kW

4 x ECHB chillers at 5600 tons (3600 kW) plus CH8 at 5800 tons (3567 kW) = 17,967 kW


18,400 kW - 17,967 kW = 433 kW

But adding CH8, instead of keeping ECHB chillers loaded higher, would add another ~700 kW condenser pump and another ~490 kW of CHWP (total of 1190 kW plus additional CP cooling tower fan energy minus some CHW pumping energy at ECHB)

Net savings is roughly 1190 - 433 = 757 kW

Actual Results at CP – June 2020 (staging, lift reduction, and optimized condenser pumping and tower control)

PRUNIZATION

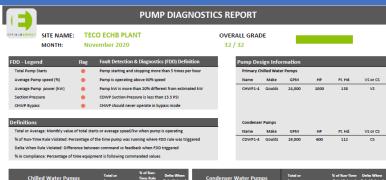
Optimization Compliance

Exit

Algorithm	SV	PV	Compliance	
ECHB Navirum Cooking Tower Fart Speed	74	74		
ECHS Number of Cooking Towers to Rus.	6	6		
ECHS Number of Condensor Water Pumps to Run	3	3		

Algorithm	SV	PV	Compliance
ECHE ON Condenser Water Flow	19000	0	
EDIE DIG Condensor Water Flore	19000	19011	
ECHB Chil Condenser Vistor Firm	19000	18951	
Scott CH4 Condenser Stater Flow	19000	19002	

Algorithm	YesiNo	Next Chiller 10 Add/Shed	Compliance
Add a Chilor	FALSE	CP2	
Sted a Chilor	TALSE	CP4	
Chiller Flank	Click I Child		


Algorithm	OE	SV	PV	Compliance
CP CHR1 Evaporator Flow Set Point	9500	8000	8044	
CP CH#2 Evaporator Flaw Set Point	0	0	0	
CF CHES Evaporator Flow Set Point	0	0	0	
CP CH#4 Evaporator Flow Set Point	11500	10700	10638	
CP CH#S Evaporator Flow Set Point	0	0	0	
CP CHWS Exaporator Flew Set Point	0	0	0	
CP CHRT Evaporator Flow Set Point	12500	12800	12872	
CP CHIES Evaporator Flow Set Point	14000	13400	13405	
CP CH99 Sysporalni Filiw Set Point	16500	15050	14644	
CP CHA16 Evaporator Flow Set Point	16500	15100	14989	

Counter has started for chiller add (click bern)

Counter has started for chiller shed (click here)

Algorithm	OE	SV	PV	Compliance
CP CHIFT Condenses Flow Set Pant	15000	14912	14912	
CP CHIIQ Condenser Flow Set Point	0	0	0	
CP CH#3 Conderaer Flow Set Point	0	0	0	
CP Child Condenser Flow Set Point	15500	15300	15285	
CP CHas Condenser Flow Set Point	0	0	0	
CP Cristi Condenser Flow Set Port	0	0	0	
CP CH#7 Candenser Flow Set Point	21000	21200	21223	
CP CHRS Condenser Fix w Set Posts	21000	20000	19955	
CP CHES Consenser Flow Set Post	24500	23800	23931	
CP Charlo Contensor Flow Set Profi	23000	23000	22243	

Algorithm	OE	PV	Compliance
CP Number of Coreing Towards to Run	7	8	
CA Number of Condenser Water Purps to Run	6	6	
CHWP 10 SPEED % 85.4 CPLWCD WRITING CRES Valve 4	>65%	88	

Chilled Water Pumps	Total or Average	% of I Time Viola	Rule Delta When	Condenser Water Pumps	Total or Average		% of Run-Time Rule Violated	Delta When Rule Violated
Total CHWP1 Starts	8	• -	-	Total CWP1 Starts	10	•		-
Average CHWP1 speed (%)	72.3%	• .	-	Average CWP1 speed (%)	100.0%	•		
Average CHWP1 power (kW)	281.3	• .		Average CWP1 power (kW)	427.5	•		
Average CHWP1 Bypass Position	0.0%	• -	-	Average CWP1 Suction Pressure (psi)	16.1	•	-	-
Total CHWP2 Starts	10	• -	-	Total CWP2 Starts	10	•	-	-
Average CHWP2 speed (%)	72.0%	• .		Average CWP2 speed (%)	100.0%	•		
Average CHWP2 power (kW)	265.7		-	Average CWP2 power (kW)	435.2	•		
Average CHWP2 Bypass Position	0.0%	• .		Average CWP2 Suction Pressure (psi)	16.2	•		
Total CHWP3 Starts	7	• -		Total CWP3 Starts	8	•		-
Average CHWP3 speed (%)	70.7%	• -	-	Average CWP3 speed (%)	100.0%	•		-
Average CHWP3 power (kW)	253.6	• -	-	Average CWP3 power (kW)	434.1	•		
Average CHWP3 Bypass Position	0.0%	• •		Average CWP3 Suction Pressure (psi)	16.0	•		-
Total CHWP4 Starts	9	• .	-	Total CWP4 Starts	7	•		
Average CHWP4 speed (%)	71.2%	• .	-	Average CWP4 speed (%)	100.0%	•		
Average CHWP4 power (kW)	267.2	• -	-	Average CWP4 power (kW)	418.8	•		-
Average CHWP4 Bypass Position	0.0%	• -	-	Average CWP4 Suction Pressure (psi)	16.6	•	-	-
Statisti	ics - CHWP	-	_	Stati	istics - CDWF	•	_	-
Average CHWP Efficiency (kW/Ton)	0.025			Average CWP Efficiency (kW/ton)	0.0407			

Total CWP2 Run-Time (hrs)

Total CWP3 Run-Time (hrs)

Total CWP4 Run-Time (hrs)

Total CHWP Energy Use (kWh)
Total CHWP1 Run-Time (hrs)
Total CHWP2 Run-Time (hrs)

Total CHWP3 Run-Time (hrs)

Total CHWP4 Run-Time (hrs)

517

Health Reports

Site: TECO ECHB				_		OPTIME
Chiller 4	Chiller Design Data				Statistics	
Month: November-2020	Manufacturer:		YORK		Average Outside Air Wet Bulb	•
	Model:		OM-8000 TITAN		Run Hours	
	Capacity (tons): Constant/Variable:		8,000 Variable Speed		Average Chilled Water Supply Temperature (°F) Average Chilled Water Return Temperature (°F)	
	Design Compressor Speed (Hz)		60		Average Condenser Water Supply Temperature (°F)	
	Design Lift (°F)		60		Average Condenser Water Return Temperature (°F)	
	Refrigerant:		Positive Pressure (R-22)		Average Chiller Load (ton)	6
Overall Grade: 8 / 8	Evaporator Design		Flooded		Average Chiller Lift (Delta °F)	
Overall Grade: 8 / 8	Orifice Style Chiller Function		Variable Cooling Only		Average Chiller Efficiency (kW/ton) Total Chiller kWh Use	1,7
Starts	6		Violated - Two or mo	re chiller starts over a 2 hour t	time period. Avg When Rule Violated = total run hours / # of starts	
Evaporator Approach (°F)	1.57	-			alarm) and 3.0 °F (yellow alarm)	
Condenser Approach (°F)	0.34	-	- Approach s	should be less than 3.5 °F (red	alarm) and 2.5 °F (yellow alarm)	
VSD Speed (%)	86.3%	-	- Variable fre	equency drive should be at lov	wer speeds at part lift and load conditions.	
Inlet Guide Vane Position (%)	98.2%		- Guide vane	s should be greater than 20%	open when chiller is operating at loads greater than 40%	
Actual versus (Predicted) Chiller Efficiency	0.43 (0.43)	-	- Actual chill	er efficiency is within 5% of pr	redicted chiller efficiency	
Average Condenser Water Delta T (delta °F)	8.68	-	- Average de	elta T should be less than desig	ın.	
Chilled Water Temperature Set Point Difference (°F)	0.13	-	- Actual chill	ed water supply temperature	should be within 0.5°F of set point.	

Savings to Date – 6%

Month	Actual Ton Hours	Actual kW/Ton	Average Demand Reduction (kW)	Actual kWh Saved
Jun-20	36,339,945	0.76	1,802	1,297,296
Jul-20	44,465,023	0.79	2,305	1,714,576
Aug-20	41,482,745	0.78	2,460	1,830,344
Sep-20	32,805,074	0.76	2,120	1,526,382
Oct-20	26,295,248	0.71	1,911	1,421,481
Nov-20	22,794,551	0.62	1,982	1,427,048
Dec-20	16,055,010	0.58	1,706	1,269,568
YTD	220,237,595	0.74	2,041	11,449,950

Questions?

Thank you!

Mike Manoucheri, P.E.

Ben Erpelding, P.E.

