

Lessons Learned and a Creative District Energy Approach to serve a new Medical District

Campus Energy 2016: The Changing Landscape February 8-12, 2016

> Mike Manoucheri, P.E. Jeff Easton, P.E.

Utilities & Energy Management

OVERVIEW

- ► Introduction
- ► Approach
- ► Lessons Applied
- ► Summary
- Current Status
- ► Next Steps

INTRODUCTION UNIVERSITY OF TEXAS AT AUSTIN

- Main Campus
 - Founded 1883
 - 70,000 students and faculty
 - 431 acres, 20 million square feet, 150+ buildings
 - 50 states, 126 countries represented
- Pickle Research Campus
 - Applied Research Labs
 - Nuclear Engineering
 - Advanced Computing Center

Image Courtesy: The University of Texas

INTRODUCTION DELL MEDICAL SCHOOL

- Phase 1
 - \$800 million new construction
 - 1.1 million square feet
 - Level 1 trauma hospital
- Fast-tracked
 - Bond passed November 2012
 - First students Fall 2016

Image Courtesy: The University of Texas

Image Courtesy: The University of Texas

INTRODUCTION UTILITIES & ENERGY MANAGEMENT

- Main Campus
 - 45,000 cooling tons
 - 1,089,000 pph steam
 - 137 MW CHP
 - 3.9 million gallon TES
 - USGBC PEER certified campus
- Pickle Research
 - 8,000 cooling tons
 - 3,750 ton plant and 1 million gallon TES tank serving super computer
- New Medical District
 - 15,600 cooling tons
 - 87,000 MBH heating water
 - 5.5 million gallon TES
 - ~2 miles of new distribution piping

Note: Installed capacity values indicated

Image Courtesy: The University of Texas

INTRODUCTION Chilling Station #7 and Hot Water Plant #1

	Chilling Station #7	Hot Water Plant #1
Startup Year	2016	2016
Number of Buildings Served	160	5 (Phase 1)
Square Footage Served	17 million sqft (campus area served)	1.1 million sqft (medical district)
Distribution Network length	> 9 miles (campus total)	2,850 Trench Feet (medical district)
Heating		
Heating Capacity	47 MMBtu	40 MMBtu
Equipment	3 gas-fired boilers + 1 HPC	3 steam-HW heat exchangers
Piping Diameters	16 inches	16 inches
System Pressure	80 psig	80 psig
System Temperatures	176 F supply / 104 F return	176 F Supply / 104 F Return
Chilling		
Chilling Capacity	15,600 tons	
Equipment	6 chillers + 1 HPC	
Piping Diameters	36 inches	
System Pressure	120 psig	
System Temperatures	39 F supply / 55 F return	
Thermal Energy Storage		
Volume	5,500,000 gallons	
Capacity	52,000 ton-Hours	
Electrical Demand Offset	6 MVV	

INTRODUCTION Chilling Station #7 and Hot Water Plant #1

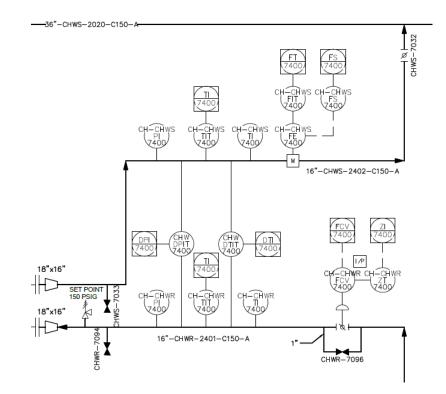
APPROACH OWNER PROJECT DEVELOPMENT

- Upstream utility master plan
- Gathered internal lessons learned
 - Recent projects
 - Industry experience
- Refined owner's specifications
- Procure sole-source key scopes

Goal: Set expectations for high quality solution

APPROACH OWNER PROJECT DEVELOPMENT

- Developed strong RFP
 - Defined overall scope/schedule
 - System design criteria
 - Preliminary equipment criteria
 - Identified potential design studies
 - Encompassed operational/design philosophy
 - Required some "pre-design"
 - Consider getting help
- Design-Build approach selected
 - Schedule advantages
 - Open book flexibility
 - Early pricing
 - Team mentality


Goal: Pick the right team

APPROACH DESIGN-BUILD

- Strategic team
 - Engineer led
 - Controls integrator on the design team
 - Optimization consultant
- Extensive tours of existing facilities
 - The good and the not so good
- Design charrettes
 - Focus on early P&ID development
- Line-by-line review of sequence of ops
 - Involve UT leadership AND operations staff
- Inclusive design reviews with UT discipline reps
- BIM walkthroughs at major design milestones

Goal: Incorporate best practices, hone the solution

APPROACH DESIGN-BUILD

- More BIM walkthroughs
- Early subcontractor engagement
 - Pricing and constructability feedback
 - Accountability
- Open book finances
 - Flexibility enabled smart decisions
- Early Procurement
 - Minimized financial risk
 - Helped define schedule / staging
 - Coordination with actual equipment
- BMcD Mech/Elec field superintendents

Image Courtesy: Flintco

Goal: Expedited delivery without sacrificing quality

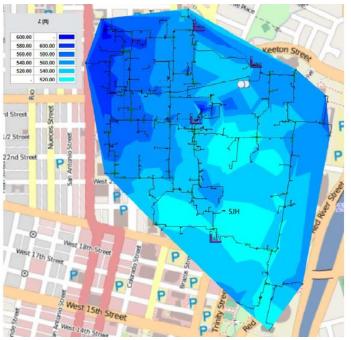
LESSONS APPLIED OPERATIONS

- Avoid single points of failure
 - N+1 pumping
 - 4 independent water services
 - Multiple distribution paths
 - Bypass lines
- Geographic diversity
- Smaller equipment, higher quantity
 - Reliability
 - Operational flexibility

Graphic Courtesy: The University of Texas

Goal: Resiliency!

LESSONS APPLIED OPERATIONS


- Attention to dead legs and idle operation
 - Bypass for the bypass
- Material Selections
 - Valve components
 - Gaskets and pump seals
 - Considerations at cooling tower!
- Comprehensive Cx
 - Owner executed

Goal: Attention to Details – EVERYTHING MATTERS!

LESSONS APPLIED OPERATIONS

- TES-1 start-up experience
 - Extreme focus on TES-2 design and control
- Predictive operational models
 - Campus-wide flow modeling
 - Optimization across CS6/CS7
 - · Focus design on the "sweet spot"

Graphic Courtesy: The University of Texas

Goal: Optimized Operations

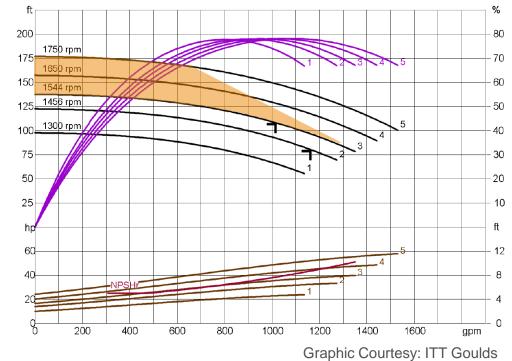
LESSONS APPLIED DESIGN

- HDPE distribution piping
 - Sizing for surge
 - To insulate or not to insulate...
 - Transition joint design
 - ► Torque calculation & procedure
 - Custom flange adapter at valves
 - Gasket selection
 - Belleville washers
- Corrosion protection
 - "Exercise" sequences
 - Avoided dead legs
 - Material upgrades

BURNS MEDONNELL.

Goal: Long-term Reliability

Image Courtesy: Flintco


Image Courtesy: Flintco

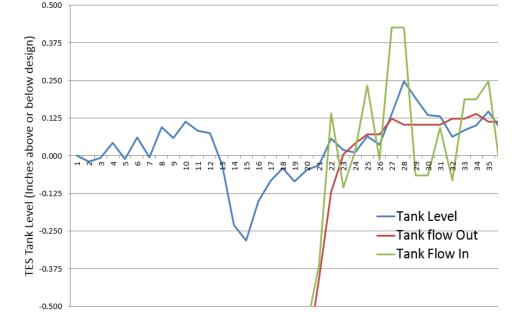
LESSONS APPLIED DESIGN

- Pump adventures
 - VS operation: 0-60 Hz and beyond
 - Max impellers, max flexibility
 - VFD overloading protection
 - Terminal box envy
- Valve selection

BURNS MEDONNELL.

- Gear box torque capability
- High performance vs. resilient seat

Goal: Find the best balance between cost and performance


LESSONS APPLIED DESIGN

- ▶ 5°F approach cooling tower
 - Lowest cost of ownership
- TES-2 control
 - 6,000 gallons/inch!
 - Dynamic return pressure
 - Concurrent operation with TES-1 •
 - Level response simulation
 - Tight CV selection
- Designed for optimization
 - Custom sequences
 - HW temp flexibility

BURNS MEDONNELL.

- Strategic equipment selections
- 600 ton Heat pump chiller

Goal: Design with optimization in mind

Graphic Courtesy: The Hartman Company

SUMMARY CS7 / TES-2 BENEFITS

- Lower campus annual kW/ton
 - 0.547 kw/ton annual projected
- Offset 6 MW of peak demand
 - Avoids additional CHP capacity
- Improves campus hydraulics
- Off-load plants in need of renewal
- Room for expansion
 - 5,000 tons more chiller
 - 1,800 tons / 30 MMBtu more HPC
 - 12 MMBtu more boiler

CURRENT STATUS DELL MEDICAL SCHOOL

- Phase 1 Under Construction
 - Dell Seton Medical Center Teaching Hospital
 - Research
 - Education and Administration
 - Medical Office
- Scheduled to open fall 2016

Image Courtesy: Flintco

CURRENT STATUS CHILLING STATION #7

- Substantial completion late June 2016
- Pre-functional testing underway

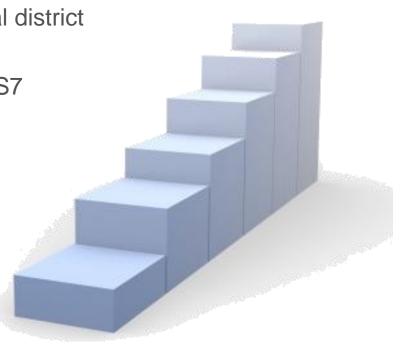


Image Courtesy: Flintco

NEXT STEPS

- Study to optimally balance CHP and TES (x2) dispatch
- Optimization implementation
- Offset peak power increase from medical district
- Phase 2 build-out of medical district
- Distribution upgrades to further utilize CS7

QUESTIONS??

Mike Manoucheri, P.E. (512) 471-8818 michael.manoucheri@austin.utexas.edu

Jeff Easton, P.E. (817) 840-1244 jaeaston@burnsmcd.com

