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Agenda

* Prioritizing goals
e Electrification!
— Current power grids

— Implications for heat pump approaches
— Grid decarbonization

* Heat pump system design

* Solar energy

* Bioenergy

e Uncertainty and the importance of flexibility
* Role of district energy
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Prioritizing goals

* Reliability

* Resiliency

* Environmental impacts
* Costs

* Flexibility

* Stakeholders
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Current power grids
USEPA eGRID regions
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ENERGY INC This is & representational map; many of the boundaries shown on this map are approximate because they are based on companies, not on sirictly geographical boundaries
September 2015
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Current power grids
USEPA eGRID sub-regions

Map of eGRID Subregions

USEPA, eGRID, June 2018

Crosshaiching indicates that an area falls within overapping
eGRID subregions due fo the presence of multiple eleciric
service providers. Visit Power Profier to definitively determine
the eGRID subregion associated with your location and
elactric service provider

hitp e & p . govieneray ipower-profiler



Current power grids
Grid GHG emissions
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Implications for heat pump approaches
GHG emissions using heat pumps at COP 3.5
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Implications for heat pump approaches
Comparing heat pumps to CHP

Assuming average grid emissions
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Geoexchange
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OVER BOREFIELD: ® Depth VS area

* Geologic factors

* Avoid long-term cooling
or heating of ground
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Chiller heat recovery

* Essential to analyze 8760 hour loads!

* Coincident or near-coincident heating & cooling loads

Princeton University

Princeton University - 2036 Thermal Profile
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Sewage heat recovery

* Location, location, location

e Key considerations include
adequate flows & temperatures:

— Daily and seasonal variations
in sewage or effluent flow
and temperature

— 8760 heating & cooling loads

* Significant Swedish experience
with treated sewage effluent

e Vancouver system taps
untreated sewage
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Solar energy

Photovoltaic Solar Resource of the United States
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Annual average solar resource
data are shown for aftilt =
latitude collector. The data for
Hawaii and the 48 contiguous
states are a 10km satellite
modeled dataset (SUNY/NREL,
30 2007) representing data from

1998-2009.

The data for Alaska are a 40 km
dataset produced by the
Climatological Solar Radiation
Model (NREL, 2003).
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This map was produced by
the National Renewable
Energy Laboratory for the U.S.
Department of Energy.
Billy J. Roberts
19 September 2012
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SEVa
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Bioenergy
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Uncertainty and the importance of flexibility

* Design for flexibility to
evolve the infrastructure!
* Things will change!
— Prices
— Technologies

— Regulations & policies
— Weather & loads

* Will power grid emissions be significantly reduced in a
way that is cost-effective and reliable?

* Will power transmission and distribution systems be
reliable and resilient?
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Role of district energy

Take advantage of load diversity

Facilitate resiliency

Facilitate integration of waste heat & renewables
Optimize thermal/electric balance

Facilitate integration of heating & cooling

Optimize opportunities for daily & seasonal storage

N o s W NE

Facilitate fuel/energy source switching
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Thanks for your attention!

Questions?

Mark Spurr (I
Phone: 612-607-4544 ‘VF VB

_ ENERGY INC
Email: mspurr@fvbenergy.com

Global Presence
Local Solutions

45 Years of Experience in Sustainable District Energy Systems


mailto:mspurr@fvbenergy.com

	Energy infrastructure design for low carbon, reliability and resiliency
	Agenda
	Prioritizing goals
	Current power grids�USEPA eGRID regions
	Current power grids�USEPA eGRID sub-regions
	Current power grids�Grid GHG emissions
	Implications for heat pump approaches�GHG emissions using heat pumps at COP 3.5
	Implications for heat pump approaches�Comparing heat pumps to CHP 
	Grid decarbonization
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Solar energy
	Solar energy
	Bioenergy
	Uncertainty and the importance of flexibility
	Role of district energy
	   Thanks for your attention!��Questions?����

